On constants in Maxwell inequalities for bounded and convex domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 46-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a bounded and convex domain $\Omega\subset\mathbb R^3$ we show that the Maxwell constants are bounded from below and above by Friedrichs' and Poincaré's constants of $\Omega$.
@article{ZNSL_2014_425_a3,
     author = {D. Pauly},
     title = {On constants in {Maxwell} inequalities for bounded and convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--54},
     year = {2014},
     volume = {425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/}
}
TY  - JOUR
AU  - D. Pauly
TI  - On constants in Maxwell inequalities for bounded and convex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 46
EP  - 54
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/
LA  - en
ID  - ZNSL_2014_425_a3
ER  - 
%0 Journal Article
%A D. Pauly
%T On constants in Maxwell inequalities for bounded and convex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 46-54
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/
%G en
%F ZNSL_2014_425_a3
D. Pauly. On constants in Maxwell inequalities for bounded and convex domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 46-54. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/

[1] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, “Vector potentials in three-dimensional non-smooth domains”, Math. Methods Appl. Sci., 21:9 (1998), 823–864 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] M. Costabel, “A coercive bilinear form for Maxwell's equations”, J. Math. Anal. Appl., 157:2 (1991), 527–541 | DOI | MR | Zbl

[3] V. Girault, H.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Series in Computational Mathematics, Springer, Heidelberg, 1986 | DOI | MR | Zbl

[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston, 1985 | MR | Zbl

[5] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986 | MR | Zbl

[6] R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl

[7] R. Picard, N. Weck, K.-J. Witsch, “Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles”, Analysis (Munich), 21 (2001), 231–263 | MR | Zbl

[8] D. Pauly, S. Repin, “Two-sided a posteriori error bounds for electro-magneto static problems”, J. Math. Sci. (N.Y.), 166:1 (2010), 53–62 | DOI | MR | Zbl

[9] L. E. Payne, H. F. Weinberger, “An optimal Poincaré Inequality for Convex Domains”, Arch. Rational Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl

[10] S. Repin, A posteriori estimates for partial differential equations, Radon Series Comp. Appl. Math., 4, Walter de Gruyter, Berlin, 2008 | DOI | MR

[11] J. Saranen, “On an inequality of Friedrichs”, Math. Scand., 51:2 (1982), 310–322 | MR | Zbl

[12] C. Weber, “A local compactness theorem for Maxwell's equations”, Math. Methods Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl

[13] N. Weck, “Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries”, J. Math. Anal. Appl., 46 (1974), 410–437 | DOI | MR | Zbl

[14] K.-J. Witsch, “A remark on a compactness result in electromagnetic theory”, Math. Methods Appl. Sci., 16 (1993), 123–129 | DOI | MR | Zbl