On constants in Maxwell inequalities for bounded and convex domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 46-54

Voir la notice de l'article provenant de la source Math-Net.Ru

For a bounded and convex domain $\Omega\subset\mathbb R^3$ we show that the Maxwell constants are bounded from below and above by Friedrichs' and Poincaré's constants of $\Omega$.
@article{ZNSL_2014_425_a3,
     author = {D. Pauly},
     title = {On constants in {Maxwell} inequalities for bounded and convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {425},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/}
}
TY  - JOUR
AU  - D. Pauly
TI  - On constants in Maxwell inequalities for bounded and convex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 46
EP  - 54
VL  - 425
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/
LA  - en
ID  - ZNSL_2014_425_a3
ER  - 
%0 Journal Article
%A D. Pauly
%T On constants in Maxwell inequalities for bounded and convex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 46-54
%V 425
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/
%G en
%F ZNSL_2014_425_a3
D. Pauly. On constants in Maxwell inequalities for bounded and convex domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 46-54. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a3/