On symmetry of the extremal in some embedding theorems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 35-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the symmetry/asymmetry of functions providing sharp constants in the embedding theorems $\mathring W_2^r(-1,1)\hookrightarrow\mathring W_\infty^k(-1,1)$ for various $r$ and $k$. The sharp constants for all $r>k$ in the cases $k=4$ and $k=6$ are calculated explicitly as well.
@article{ZNSL_2014_425_a2,
     author = {E. V. Mukoseeva and A. I. Nazarov},
     title = {On symmetry of the extremal in some embedding theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--45},
     year = {2014},
     volume = {425},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a2/}
}
TY  - JOUR
AU  - E. V. Mukoseeva
AU  - A. I. Nazarov
TI  - On symmetry of the extremal in some embedding theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 35
EP  - 45
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a2/
LA  - ru
ID  - ZNSL_2014_425_a2
ER  - 
%0 Journal Article
%A E. V. Mukoseeva
%A A. I. Nazarov
%T On symmetry of the extremal in some embedding theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 35-45
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a2/
%G ru
%F ZNSL_2014_425_a2
E. V. Mukoseeva; A. I. Nazarov. On symmetry of the extremal in some embedding theorems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 35-45. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a2/

[1] M. Belloni, B. Kawohl, “A symmetry problem related to Wirtinger's and Poincare's inequality”, J. Diff. Eq., 156 (1999), 211–218 | DOI | MR | Zbl

[2] A. P. Buslaev, V. A. Kondratev, A. I. Nazarov, “Ob odnom semeistve ekstremalnykh zadach i svyazannykh s nim svoistvakh odnogo integrala”, Mat. zametki, 64:6 (1998), 830–838 | DOI | MR | Zbl

[3] B. Dacorogna, W. Gangbo, N. Subia, “Sur une généralisation de l'inégalité de Wirtinger”, Ann. Inst. H. Poincaré. Analyse Non Linéaire, 9 (1992), 29–50 | MR | Zbl

[4] Y. V. Egorov, “On a Kondratiev problem”, C. R. A. S. Paris Ser. I, 324 (1997), 503–507 | DOI | MR | Zbl

[5] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, Gos. izdatelstvo inostrannoi literatury, Moskva, 1948

[6] M. Janet, “Sur une suite de fonctions considérée par Hermite et son application à un problème du calcul des variations”, C. R. A. S. Paris, 190 (1930), 32–34 | Zbl

[7] G. A. Kalyabin, “Tochnye otsenki dlya funktsii klassa $\mathring W_2^r(-1,1)$”, Trudy MIAN, 269, 2010, 143–149 | MR | Zbl

[8] B. Kawohl, “Symmetry results for functions yelding best constants in Sobolev-type inequalities”, Discr. Contin. Dyn. Syst., 6:3 (2000), 683–690 | DOI | MR | Zbl

[9] V. I. Levin, “O neravenstvakh. II. Ob odnom klasse integralnykh neravenstv”, Mat. Sbornik (N.S.), 4(46):2 (1938), 309–324 | Zbl

[10] A. I. Nazarov, “O tochnoi konstante v obobschennom neravenstve Puankare”, Teor. funk. i prilozh., Probl. mat. an., 24, T. Rozhkovskaya, 2002, 155–180

[11] A. I. Nazarov, A. N. Petrova, “O tochnykh konstantakh v nekotorykh teoremakh vlozheniya vysokogo poryadka”, Vestnik SPb. univ. Ser. 1, 2008, no. 4, 16–20 | Zbl

[12] V. A. Steklov, “Zadacha ob okhlazhdenii neodnorodnogo tverdogo sterzhnya”, Soobsch. Kharkovskogo mat. obschestva, Ser. 2, 5 (1896), 136–181

[13] W. Stekloff, “Problème de refroidissement d'une barre hétérogène”, Ann. fac. sci. Toulouse, Sér. 2, 3 (1901), 281–313 | DOI | MR

[14] E. Schmidt, “Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet”, Math. Ann., 117 (1940), 301–326 | DOI | MR | Zbl

[15] K. Watanabe, Y. Kametaka, A. Nagai, H. Yamagishi, K. Takemura, “Symmetrization of functions and the best constant of 1-dim $L^p$ Sobolev inequality”, J. Inequal. Appl., 2009 (2009), Article ID 874631, 12 pp. | DOI | MR

[16] K. Watanabe, Y. Kametaka, H. Yamagishi, A. Nagai, K. Takemura, “The best constant of Sobolev inequality corresponding to clamped boundary value problem”, Bound. Value Probl., 2011 (2011), Article ID 875057, 17 pp. | MR | Zbl