Estimates of the distance to the exact solution of parabolic problems based on local Poincar\'e type inequalities
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 7-34
Voir la notice de l'article provenant de la source Math-Net.Ru
The goal of the paper is to derive two-sided bounds of the distance between the exact solution of the evolutionary reaction-diffusion problem with mixed Dirichlet–Robin boundary conditions and any function in the admissible energy space. The derivation is based upon special transformations of the integral identity, that defines the generalized solution. In order to obtain estimates with easily computable local constants we exploit classical Poincaré inequalities and Poincaré type inequalities for functions with zero mean boundary traces. The corresponding constants are estimated in [10] and [8]. Bounds of the distance to the exact solution contain only these constants associated with subdomains. It is proved that the bounds are equivalent to the energy norm of the error.
@article{ZNSL_2014_425_a1,
author = {S. Matculevich and S. Repin},
title = {Estimates of the distance to the exact solution of parabolic problems based on local {Poincar\'e} type inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--34},
publisher = {mathdoc},
volume = {425},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/}
}
TY - JOUR AU - S. Matculevich AU - S. Repin TI - Estimates of the distance to the exact solution of parabolic problems based on local Poincar\'e type inequalities JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 7 EP - 34 VL - 425 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/ LA - en ID - ZNSL_2014_425_a1 ER -
%0 Journal Article %A S. Matculevich %A S. Repin %T Estimates of the distance to the exact solution of parabolic problems based on local Poincar\'e type inequalities %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 7-34 %V 425 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/ %G en %F ZNSL_2014_425_a1
S. Matculevich; S. Repin. Estimates of the distance to the exact solution of parabolic problems based on local Poincar\'e type inequalities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/