Voir la notice du chapitre de livre
@article{ZNSL_2014_425_a1,
author = {S. Matculevich and S. Repin},
title = {Estimates of the distance to the exact solution of parabolic problems based on local {Poincar\'e} type inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--34},
year = {2014},
volume = {425},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/}
}
TY - JOUR AU - S. Matculevich AU - S. Repin TI - Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 7 EP - 34 VL - 425 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/ LA - en ID - ZNSL_2014_425_a1 ER -
%0 Journal Article %A S. Matculevich %A S. Repin %T Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 7-34 %V 425 %U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/ %G en %F ZNSL_2014_425_a1
S. Matculevich; S. Repin. Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/
[1] G. Acosta, R. G. Durán, “An optimal Poincaré inequality in $L^1$ for convex domains”, Adv. Numer. Anal., 15 (2009), Art. ID 164519
[2] S.-K. Chua, R. L. Wheeden, “Estimates of best constants for weighted Poincaré inequalities on convex domains”, Proc. London Math. Soc. (3), 93:1 (2006), 197–226 | DOI | MR | Zbl
[3] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, second edition, American Mathematical Society, Providence, RI, 2010 | MR | Zbl
[4] M. Fuchs, “Computable upper bounds for the constants in Poincaré-type inequalities for fields of bounded deformation”, Math. Methods Appl. Sci., 34:15 (2011), 1920–1932 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | MR | Zbl
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967
[7] O. Mali, P. Neittaanmäki, S. I. Repin, Accuracy verification methods, Theory and algorithms, Springer, 2014 | MR
[8] A. I. Nazarov, S. I. Repin, “Exact constants in Poincare type inequalities for functions with zero mean boundary traces”, Mathematical Methods in Applied Sciences (to appear); 2012, arXiv: 1211.2224[math.AP]
[9] P. Neittaanmäki, S. I. Repin, Reliable methods for computer simulation. Error control and a posteriori estimates, Studies in Mathematics and its Applications, 33, Elsevier Science B.V., Amsterdam, 2004 | MR | Zbl
[10] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rational Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl
[11] H. Poincare, “Sur les Equations aux Derivees Partielles de la Physique Mathematique”, Amer. J. Math., 12:3 (1890), 211–294 | DOI | MR
[12] S. I. Repin, A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin, 2008 | MR
[13] S. I. Repin, S. Sauter, “Functional a posteriori estimates for the reaction-diffusion problem”, C. R. Acad. Sci. Paris, 343:1 (2006), 349–354 | DOI | MR | Zbl
[14] S. I. Repin, “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Rend. Mat. Acc. Lincei, 13:9 (2002), 121–133 | MR | Zbl
[15] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987 | MR | Zbl