Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 7-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The goal of the paper is to derive two-sided bounds of the distance between the exact solution of the evolutionary reaction-diffusion problem with mixed Dirichlet–Robin boundary conditions and any function in the admissible energy space. The derivation is based upon special transformations of the integral identity, that defines the generalized solution. In order to obtain estimates with easily computable local constants we exploit classical Poincaré inequalities and Poincaré type inequalities for functions with zero mean boundary traces. The corresponding constants are estimated in [10] and [8]. Bounds of the distance to the exact solution contain only these constants associated with subdomains. It is proved that the bounds are equivalent to the energy norm of the error.
@article{ZNSL_2014_425_a1,
     author = {S. Matculevich and S. Repin},
     title = {Estimates of the distance to the exact solution of parabolic problems based on local {Poincar\'e} type inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--34},
     year = {2014},
     volume = {425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/}
}
TY  - JOUR
AU  - S. Matculevich
AU  - S. Repin
TI  - Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 7
EP  - 34
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/
LA  - en
ID  - ZNSL_2014_425_a1
ER  - 
%0 Journal Article
%A S. Matculevich
%A S. Repin
%T Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 7-34
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/
%G en
%F ZNSL_2014_425_a1
S. Matculevich; S. Repin. Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a1/

[1] G. Acosta, R. G. Durán, “An optimal Poincaré inequality in $L^1$ for convex domains”, Adv. Numer. Anal., 15 (2009), Art. ID 164519

[2] S.-K. Chua, R. L. Wheeden, “Estimates of best constants for weighted Poincaré inequalities on convex domains”, Proc. London Math. Soc. (3), 93:1 (2006), 197–226 | DOI | MR | Zbl

[3] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, second edition, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[4] M. Fuchs, “Computable upper bounds for the constants in Poincaré-type inequalities for fields of bounded deformation”, Math. Methods Appl. Sci., 34:15 (2011), 1920–1932 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | MR | Zbl

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967

[7] O. Mali, P. Neittaanmäki, S. I. Repin, Accuracy verification methods, Theory and algorithms, Springer, 2014 | MR

[8] A. I. Nazarov, S. I. Repin, “Exact constants in Poincare type inequalities for functions with zero mean boundary traces”, Mathematical Methods in Applied Sciences (to appear); 2012, arXiv: 1211.2224[math.AP]

[9] P. Neittaanmäki, S. I. Repin, Reliable methods for computer simulation. Error control and a posteriori estimates, Studies in Mathematics and its Applications, 33, Elsevier Science B.V., Amsterdam, 2004 | MR | Zbl

[10] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rational Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl

[11] H. Poincare, “Sur les Equations aux Derivees Partielles de la Physique Mathematique”, Amer. J. Math., 12:3 (1890), 211–294 | DOI | MR

[12] S. I. Repin, A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin, 2008 | MR

[13] S. I. Repin, S. Sauter, “Functional a posteriori estimates for the reaction-diffusion problem”, C. R. Acad. Sci. Paris, 343:1 (2006), 349–354 | DOI | MR | Zbl

[14] S. I. Repin, “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Rend. Mat. Acc. Lincei, 13:9 (2002), 121–133 | MR | Zbl

[15] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987 | MR | Zbl