Bilinear embedding theorems for differential operators in $\mathbb R^2$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 210-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove bilinear inequalities for differential operators in $\mathbb R^2$. Such type inequalities turned out to be useful for anisotropic embedding theorems for overdetermined systems and the limiting order summation exponent. However, here we study the phenomenon in itself. We consider elliptic case, where our analysis is complete, and non-elliptic, where it is not. The latter case is related to Strichartz estimates in a very easy case of two dimensions.
@article{ZNSL_2014_424_a8,
     author = {D. M. Stolyarov},
     title = {Bilinear embedding theorems for differential operators in~$\mathbb R^2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--234},
     year = {2014},
     volume = {424},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a8/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - Bilinear embedding theorems for differential operators in $\mathbb R^2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 210
EP  - 234
VL  - 424
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a8/
LA  - ru
ID  - ZNSL_2014_424_a8
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T Bilinear embedding theorems for differential operators in $\mathbb R^2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 210-234
%V 424
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a8/
%G ru
%F ZNSL_2014_424_a8
D. M. Stolyarov. Bilinear embedding theorems for differential operators in $\mathbb R^2$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 210-234. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a8/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, 1975 | MR

[2] S. V. Kislyakov, D. V. Maksimov, D. M. Stolyarov, “Prostranstva gladkikh funktsii, porozhdennye neodnorodnymi differentsialnymi vyrazheniyami”, Funkts. analiz i ego pril., 47:2 (2013), 89–92 | DOI | MR | Zbl

[3] S. V. Kislyakov, N. G. Sidorenko, “Otsutstvie bezuslovnoi lokalnoi struktury v anizotropnykh prostranstvakh gladkikh funktsii”, Sib. mat. zh., 29:3 (1988), 64–77 | MR | Zbl

[4] V. I. Kolyada, “O vlozhenii prostranstv Soboleva”, Mat. zametki, 54:3 (1993), 48–71 | MR | Zbl

[5] V. A. Solonnikov, “O nekotorykh neravenstvakh dlya funktsii iz klassov $\vec W_p(R^n)$”, Zap. nauchn. semin. LOMI, 27, 1972, 194–210 | MR | Zbl

[6] J.-G. Bak, “Sharp estimates for the Bochner–Riesz operator of negative order in $\mathbb R^2$”, Proceedings of the American Mathematical Society, 125:7 (1997), 1977–1986 | DOI | MR | Zbl

[7] V. Havin, B. Jöricke, The uncertainty principle in harmonic analysis, Springer, 1994 | MR

[8] L. Hörmander, “On the division of distributions by polynomials”, Ark. fur Mat., 3:6 (1958), 555–568 | DOI | MR | Zbl

[9] S. V. Kislyakov, D. V. Maksimov, D. M. Stolyarov, Differential expressions with mixed homogeneity and spaces of smooth functions they generate, arXiv: 1209.2078

[10] A. Pełczyński, K. Senator, “On isomorphisms of anisotropic Sobolev spaces with “classical Banach spaces” and a Sobolev type embedding theorem”, Studia Math., 84 (1986), 169–215 | MR

[11] H. P. Rosenthal, Projections onto translation-invariant subspaces of $L^p(G)$, Memoirs of the American Mathematical Society, 63, 1966 | MR | Zbl

[12] T. Tao, Recent progress on the Restriction conjecture, arXiv: math/0311181