Weighted Calderón–Zygmund decomposition with some applications to interpolation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 186-200
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ be an $\mathrm A_1$-regular lattice of measurable functions and let $Q$ be a projection which is also a Calderón–Zygmund operator. Then it is possible to define a space $X^Q$ consisting of the functions $f\in X$ that satisfy $Qf=f$ in a certain sense. By using the Bourgain approach to interpolation, we establish that the couple $(\mathrm L_1^Q,X^Q)$ is $\mathrm K$-closed in $(\mathrm L_1,X)$. This result is sharp in the sense that, in general, $\mathrm A_1$-regularity cannot be replaced by weaker conditions such as $\mathrm A_p$-regularity for $p>1$.
@article{ZNSL_2014_424_a6,
     author = {D. V. Rutsky},
     title = {Weighted {Calder\'on{\textendash}Zygmund} decomposition with some applications to interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--200},
     year = {2014},
     volume = {424},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a6/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Weighted Calderón–Zygmund decomposition with some applications to interpolation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 186
EP  - 200
VL  - 424
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a6/
LA  - ru
ID  - ZNSL_2014_424_a6
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Weighted Calderón–Zygmund decomposition with some applications to interpolation
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 186-200
%V 424
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a6/
%G ru
%F ZNSL_2014_424_a6
D. V. Rutsky. Weighted Calderón–Zygmund decomposition with some applications to interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 186-200. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a6/

[1] S. V. Astashkin, P. Sunehag, “Real method of interpolation on subcouples of codimension one”, Studia Mathematica, 186:2 (2008), 151–168 | DOI | MR

[2] J. Bergh, J. Löfström, Interplation spaces. An introduction, Springer-Verlag, 1976 | MR | Zbl

[3] S. V. Kisliakov, “Interpolation of $H^p$-spaces: some recent developments”, Israel Math. Conf., 13 (1999), 102–140 | MR | Zbl

[4] S. Kisliakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings and Singular Integrals, Birkhäuser/Springer Basel AG, 2012

[5] S. V. Kisliakov, “On BMO-regular couples of lattices of measurable functions”, Stud. Math., 159:2 (2003), 277–289 | DOI | MR

[6] D. V. Rutsky, Thesis (C. Sc.), St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 2011 (in Russian)

[7] D. V. Rutsky, “$A_1$-regularity and boundedness of Calderon–Zygmund operators”, Studia Mathematica (to appear)

[8] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integral, Princeton University Press, 1993 | MR | Zbl

[9] D. S. Anisimov, C. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i Analiz, 16:5 (2004), 1–33 | MR | Zbl

[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, BKhV, Peterburg, 2004

[11] C. V. Kislyakov, Kuankhua Shu, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i Analiz, 8:4 (1996), 75–109 | MR | Zbl

[12] D. V. Rutskii, “BMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i Analiz, 23:2 (2001), 248–295 | MR | Zbl

[13] D. V. Rutskii, “O svyazi mezhdu AK-ustoichivostyu i BMO-regulyarnostyu”, Zap. nauchn. semin. POMI, 416, 2013, 175–187 ; “Исправление к работе ‘О связи между АК-устойчивостью и BMO-регулярностью’ ”, Зап. научн. семин. ПОМИ, 424, 2014, 201–209