Characterization of optimal decompositions in real interpolation. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 179-185
Cet article a éte moissonné depuis la source Math-Net.Ru
Optimal decompositions mentioned in the title have certain extremal properties expressed in terms of duality. We present a direct and fairly short proof of this.
@article{ZNSL_2014_424_a5,
author = {S. V. Kislyakov and N. Ya. Kruglyak and J. Niyobuhungiro},
title = {Characterization of optimal decompositions in real {interpolation.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--185},
year = {2014},
volume = {424},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a5/}
}
TY - JOUR AU - S. V. Kislyakov AU - N. Ya. Kruglyak AU - J. Niyobuhungiro TI - Characterization of optimal decompositions in real interpolation. II JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 179 EP - 185 VL - 424 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a5/ LA - ru ID - ZNSL_2014_424_a5 ER -
S. V. Kislyakov; N. Ya. Kruglyak; J. Niyobuhungiro. Characterization of optimal decompositions in real interpolation. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 179-185. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a5/
[1] N. Kruglyak, J. Niyobuhungiro, “Characterization of optimal decompositions in real Interpolation”, J. Approx. Theory, 185 (2014), 1–11 | DOI | MR | Zbl
[2] H. Attouch, H. Brezis, “Duality for the Sum of Convex Functions in General Banach Spaces”, Aspects of Mathematics and its Applications, ed. J. A. Barroso, North-Holland, Amsterdam, 1986, 125–133 | DOI | MR