Entire functions with preassigned zero proximate order
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 141-153

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that if the proximate order $\rho(r)$ is such that $\lim\rho(r)=\rho>0$ ($r\to\infty$), then there exists an entire function $f(z)$ of proximate order $\rho(r)$. In the case where $\rho=0$ the question about the existence of such an entire function has remained open until now. This question is investigated in the paper.
@article{ZNSL_2014_424_a3,
     author = {A. F. Grishin and Nguyen Van Quynh},
     title = {Entire functions with preassigned zero proximate order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {424},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a3/}
}
TY  - JOUR
AU  - A. F. Grishin
AU  - Nguyen Van Quynh
TI  - Entire functions with preassigned zero proximate order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 141
EP  - 153
VL  - 424
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a3/
LA  - ru
ID  - ZNSL_2014_424_a3
ER  - 
%0 Journal Article
%A A. F. Grishin
%A Nguyen Van Quynh
%T Entire functions with preassigned zero proximate order
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 141-153
%V 424
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a3/
%G ru
%F ZNSL_2014_424_a3
A. F. Grishin; Nguyen Van Quynh. Entire functions with preassigned zero proximate order. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 141-153. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a3/