On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 126-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the convergence of an infinite product of multipliers for a Hilbert space with Nevanlinna-Pick kernel. It is natural to view these products as an analog of Blaschke products in the algebra $H^\infty$.
@article{ZNSL_2014_424_a2,
     author = {I. V. Videnskii},
     title = {On an analog of {Blaschke} products for {Hilbert} spaces with {Nevanlinna{\textendash}Pick} kernels},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--140},
     year = {2014},
     volume = {424},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/}
}
TY  - JOUR
AU  - I. V. Videnskii
TI  - On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 126
EP  - 140
VL  - 424
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/
LA  - ru
ID  - ZNSL_2014_424_a2
ER  - 
%0 Journal Article
%A I. V. Videnskii
%T On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 126-140
%V 424
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/
%G ru
%F ZNSL_2014_424_a2
I. V. Videnskii. On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 126-140. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/

[1] J. Agler, Interpolation, Preprint, 1986

[2] J. Agler, J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, 44, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[3] K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series, 33, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[4] H. S. Shapiro, A. L. Shields, “On the zeros of functions with finite Dirichlet integral and some related function spaces”, Math. Z., 80 (1962), 217–229 | DOI | MR | Zbl

[5] D. E. Marshall, C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, Preprint, Available at , 1993 http://www.math.washington.edu/~marshall/preprints/preprints.html