On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 126-140
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the convergence of an infinite product of multipliers for a Hilbert space with Nevanlinna-Pick kernel. It is natural to view these products as an analog of Blaschke products in the algebra $H^\infty$.
@article{ZNSL_2014_424_a2,
author = {I. V. Videnskii},
title = {On an analog of {Blaschke} products for {Hilbert} spaces with {Nevanlinna{\textendash}Pick} kernels},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--140},
year = {2014},
volume = {424},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/}
}
I. V. Videnskii. On an analog of Blaschke products for Hilbert spaces with Nevanlinna–Pick kernels. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 126-140. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a2/
[1] J. Agler, Interpolation, Preprint, 1986
[2] J. Agler, J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, 44, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[3] K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series, 33, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[4] H. S. Shapiro, A. L. Shields, “On the zeros of functions with finite Dirichlet integral and some related function spaces”, Math. Z., 80 (1962), 217–229 | DOI | MR | Zbl
[5] D. E. Marshall, C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, Preprint, Available at , 1993 http://www.math.washington.edu/~marshall/preprints/preprints.html