Operator Lipschitz functions in several variables and M\"obius transformations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $f$ is an operator Lipschitz function defined on $\mathbb R^n$, then the function $\dfrac{f\circ\varphi}{\|\varphi'\|}$ is also operator Lipschitz for every Möbius transformations $\varphi$ with $f(\varphi(\infty))=0$. Here $\|\varphi'\|$ denotes the operator norm of the Jacobian matrix $\varphi'$. Similar statements are obtained also for operator Lipschitz functions defined on closed subsets of $\mathbb R^n$.
@article{ZNSL_2014_424_a0,
     author = {A. B. Aleksandrov},
     title = {Operator {Lipschitz} functions in several variables and {M\"obius} transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--32},
     publisher = {mathdoc},
     volume = {424},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Operator Lipschitz functions in several variables and M\"obius transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 32
VL  - 424
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/
LA  - ru
ID  - ZNSL_2014_424_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Operator Lipschitz functions in several variables and M\"obius transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-32
%V 424
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/
%G ru
%F ZNSL_2014_424_a0
A. B. Aleksandrov. Operator Lipschitz functions in several variables and M\"obius transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/