Operator Lipschitz functions in several variables and Möbius transformations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that if $f$ is an operator Lipschitz function defined on $\mathbb R^n$, then the function $\dfrac{f\circ\varphi}{\|\varphi'\|}$ is also operator Lipschitz for every Möbius transformations $\varphi$ with $f(\varphi(\infty))=0$. Here $\|\varphi'\|$ denotes the operator norm of the Jacobian matrix $\varphi'$. Similar statements are obtained also for operator Lipschitz functions defined on closed subsets of $\mathbb R^n$.
@article{ZNSL_2014_424_a0,
     author = {A. B. Aleksandrov},
     title = {Operator {Lipschitz} functions in several variables and {M\"obius} transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--32},
     year = {2014},
     volume = {424},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Operator Lipschitz functions in several variables and Möbius transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 32
VL  - 424
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/
LA  - ru
ID  - ZNSL_2014_424_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Operator Lipschitz functions in several variables and Möbius transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-32
%V 424
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/
%G ru
%F ZNSL_2014_424_a0
A. B. Aleksandrov. Operator Lipschitz functions in several variables and Möbius transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/

[1] A. B. Aleksandrov, “Operatorno lipshitsevy funktsii i drobno-lineinye preobrazovaniya”, Zap. nauchn. semin. POMI, 401, 2012, 5–52 | MR

[2] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59:4 (2010), 1451–1490 | DOI | MR | Zbl

[3] A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105:4 (2012), 821–851 | DOI | MR | Zbl

[4] A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226 (2011), 5216–5251 | DOI | MR | Zbl

[5] L. Alfors, Preobrazovaniya Mëbiusa v mnogomernom prostranstve, Mir, M., 1986 | MR

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhënnykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[7] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58 (1975), 105–122 | DOI | MR | Zbl

[8] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48 (2005), 151–173 | DOI | MR | Zbl

[9] F. Nazarov, V. Peller, “Functions of perturbed tuples of self-adjoint operators”, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 349–354 | DOI | MR | Zbl

[10] F. Nazarov, V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl