@article{ZNSL_2014_424_a0,
author = {A. B. Aleksandrov},
title = {Operator {Lipschitz} functions in several variables and {M\"obius} transformations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--32},
year = {2014},
volume = {424},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/}
}
A. B. Aleksandrov. Operator Lipschitz functions in several variables and Möbius transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/
[1] A. B. Aleksandrov, “Operatorno lipshitsevy funktsii i drobno-lineinye preobrazovaniya”, Zap. nauchn. semin. POMI, 401, 2012, 5–52 | MR
[2] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59:4 (2010), 1451–1490 | DOI | MR | Zbl
[3] A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105:4 (2012), 821–851 | DOI | MR | Zbl
[4] A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226 (2011), 5216–5251 | DOI | MR | Zbl
[5] L. Alfors, Preobrazovaniya Mëbiusa v mnogomernom prostranstve, Mir, M., 1986 | MR
[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhënnykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[7] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58 (1975), 105–122 | DOI | MR | Zbl
[8] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48 (2005), 151–173 | DOI | MR | Zbl
[9] F. Nazarov, V. Peller, “Functions of perturbed tuples of self-adjoint operators”, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 349–354 | DOI | MR | Zbl
[10] F. Nazarov, V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl