Operator Lipschitz functions in several variables and M\"obius transformations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if $f$ is an operator Lipschitz function defined on $\mathbb R^n$, then the function $\dfrac{f\circ\varphi}{\|\varphi'\|}$ is also operator Lipschitz for every Möbius transformations $\varphi$ with $f(\varphi(\infty))=0$. Here $\|\varphi'\|$ denotes the operator norm of the Jacobian matrix $\varphi'$.
Similar statements are obtained also for operator Lipschitz functions defined on closed subsets of $\mathbb R^n$.
@article{ZNSL_2014_424_a0,
author = {A. B. Aleksandrov},
title = {Operator {Lipschitz} functions in several variables and {M\"obius} transformations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--32},
publisher = {mathdoc},
volume = {424},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/}
}
A. B. Aleksandrov. Operator Lipschitz functions in several variables and M\"obius transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 42, Tome 424 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_424_a0/