Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study structure of $\mathrm{GL}(6,K)$ with respect to a certain family of conjugacy classes, whose elements are called quasi-root. Namely, we prove that any element of $\mathrm{GL}(6,K)$ is a product of three quasi-root elements, and completely describe the elements that are products of two quasi-root elements. The result arises in the study of width of exceptional groups of type $E_6$, but also is of independent interest.
@article{ZNSL_2014_423_a9,
     author = {I. M. Pevzner},
     title = {Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--204},
     year = {2014},
     volume = {423},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 183
EP  - 204
VL  - 423
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/
LA  - ru
ID  - ZNSL_2014_423_a9
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 183-204
%V 423
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/
%G ru
%F ZNSL_2014_423_a9
I. M. Pevzner. Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/

[1] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[2] H. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972

[3] H. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978 | MR

[4] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v $27$-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[5] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83 | MR

[6] M. A. Vsemirnov, “Yavlyaetsya li gruppa $\mathrm{SL}(6,\mathbb Z)$ $(2,3)$-porozhdennoi?”, Zap. nauchn. semin. POMI, 330, 2006, 101–130 | MR | Zbl

[7] M. A. Vsemirnov, “O $(2,3)$-porozhdenii matrichnykh grupp nad koltsom tselykh chisel”, Algebra i analiz, 19:6 (2007), 22–58 | MR | Zbl

[8] A. Yu. Luzgarev, I. M. Pevzner, “Nekotorye fakty iz zhizni $\mathrm{GL}(5,\mathbb Z)$”, Zap. nauchn. semin. POMI, 305, 2003, 153–162 | MR | Zbl

[9] O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 | MR

[10] O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[11] I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 23:3 (2011), 261–309 | MR | Zbl

[12] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 23:5 (2011), 155–198 | MR

[13] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, II”, Zap. nauchn. semin. POMI, 386, 2011, 242–264 | MR

[14] T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR | Zbl

[15] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[16] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[17] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[18] C. S. Ballantine, “Products of involutory matrices. I”, Linear and Multilinear Algebra, 5:1 (1977–1978), 53–62 | DOI | MR | Zbl

[19] A. Cohen, A. Steinbach, R. Ushirobira, D. Wales, “Lie algebras generated by extremal elements”, J. Algebra, 236:1 (2001), 122–154 | DOI | MR | Zbl

[20] R. R. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118:1 (1988), 150–161 | DOI | MR | Zbl

[21] J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179 | MR

[22] D. Ž. Djoković, J. G. Malzan, “Products of reflections in the general linear group over a division ring”, Linear Algebra Appl., 28 (1979), 53–62 | DOI | MR | Zbl

[23] E. W. Ellers, “Products of involutions in simple Chevalley groups”, J. Geom., 69:1–2 (2000), 68–72 | DOI | MR | Zbl

[24] E. W. Ellers, R. Frank, “Products of quasireflections and transvections over local rings”, J. Geom., 31:1–2 (1988), 69–78 | DOI | MR | Zbl

[25] E. W. Ellers, H. Ishibashi, “Factorization of transformations over a local ring”, Linear Algebra Appl., 85 (1987), 12–27 | DOI | MR

[26] E. W. Ellers, H. Lausch, “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 122–131 | DOI | MR | Zbl

[27] E. W. Ellers, H. Lausch, “Generators for classical groups of modules over local rings”, J. Geom., 39:1–2 (1990), 60–79 | DOI | MR | Zbl

[28] B. M. Gillio, M. C. Tamburini, “Alcuni classi di gruppi generati da tre involuzioni”, Rend. Ist. Lombardo Ser. A, 116 (1982), 191–209 | MR

[29] H. Gustafson, P. R. Halmos, H. Radjavi, “Products of involutions”, Linear Algebra and Appl., 13:1–2 (1976), 157–162 | DOI | MR | Zbl

[30] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Algebraic K-Theory, Lecture Notes in Math., 966, Springer, Berlin et al., 1982, 357–361 | DOI | MR

[31] F. Knüpel, K. Nielsen, “$\mathrm{SL}(V)$ is 4-reflectional”, Geom. Dedicata, 38:3 (1991), 301–308 | MR

[32] G. Malle, J. Saxl, T.|S. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI | MR | Zbl

[33] M. Newman, “Unimodular commutators”, Proc. Amer. Math. Soc., 101:4 (1987), 605–609 | DOI | MR | Zbl

[34] A. S. Sivatski, A. V. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-Theory, 17:4 (1999), 295–302 | DOI | MR | Zbl

[35] T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 | MR | Zbl

[36] W. Thurston, L. N. Vaserstein, “On $K_1$-theory of the Euclidean space”, Topology Appl., 23:2 (1986), 145–148 | DOI | MR | Zbl

[37] L. N. Vaserstein, “On $K_1$-theory of topological spaces”, Contemp. Math., 55 (1986), 729–740 | DOI | MR | Zbl

[38] L. N. Vaserstein, “Reduction of a matrix depending on parameters to a diagonal form by addition operations”, Proc. Amer. Math. Soc., 103:3 (1988), 741–746 | DOI | MR | Zbl

[39] L. N. Vaserstein, E. Wheland, “Factorization of invertible matrices over rings of stable rank one”, J. Austral. Math. Soc. Ser. A, 48:3 (1990), 455–460 | DOI | MR | Zbl

[40] M. A. Vsemirnov, “The group $\mathrm{GL}(6,\mathbb Z)$ is $(2,3)$-generated”, J. Group Theory, 10:4 (2007), 425–430 | DOI | MR | Zbl

[41] J. W. Wood, “Bundles with totally disconnected structure group”, Comment. Math. Helv., 46 (1971), 257–273 | DOI | MR | Zbl