Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204
Voir la notice de l'article provenant de la source Math-Net.Ru
We study structure of $\mathrm{GL}(6,K)$ with respect to a certain family of conjugacy classes, whose elements are called quasi-root. Namely, we prove that any element of $\mathrm{GL}(6,K)$ is a product of three quasi-root elements, and completely describe the elements that are products of two quasi-root elements. The result arises in the study of width of exceptional groups of type $E_6$, but also is of independent interest.
@article{ZNSL_2014_423_a9,
author = {I. M. Pevzner},
title = {Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--204},
publisher = {mathdoc},
volume = {423},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/}
}
I. M. Pevzner. Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/