Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204

Voir la notice de l'article provenant de la source Math-Net.Ru

We study structure of $\mathrm{GL}(6,K)$ with respect to a certain family of conjugacy classes, whose elements are called quasi-root. Namely, we prove that any element of $\mathrm{GL}(6,K)$ is a product of three quasi-root elements, and completely describe the elements that are products of two quasi-root elements. The result arises in the study of width of exceptional groups of type $E_6$, but also is of independent interest.
@article{ZNSL_2014_423_a9,
     author = {I. M. Pevzner},
     title = {Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--204},
     publisher = {mathdoc},
     volume = {423},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 183
EP  - 204
VL  - 423
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/
LA  - ru
ID  - ZNSL_2014_423_a9
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 183-204
%V 423
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/
%G ru
%F ZNSL_2014_423_a9
I. M. Pevzner. Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 183-204. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a9/