@article{ZNSL_2014_423_a8,
author = {Edmond W. H. Lee},
title = {Inherently non-finitely generated varieties of aperiodic monoids with central idempotents},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--182},
year = {2014},
volume = {423},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/}
}
Edmond W. H. Lee. Inherently non-finitely generated varieties of aperiodic monoids with central idempotents. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 166-182. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/
[1] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York, 1981 | MR | Zbl
[2] M. Jackson, “On the finite basis problem for finite Rees quotients of free monoids”, Acta Sci. Math. (Szeged), 67 (2001), 121–159 | MR | Zbl
[3] M. Jackson, “Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 70 (2005), 159–187 | DOI | MR | Zbl
[4] M. Jackson, O. Sapir, “Finitely based, finite sets of words”, Internat. J. Algebra Comput., 10 (2000), 683–708 | MR | Zbl
[5] E. W. H. Lee, “Finitely generated limit varieties of aperiodic monoids with central idempotents”, J. Algebra Appl., 8 (2009), 779–796 | DOI | MR | Zbl
[6] E. W. H. Lee, “Cross varieties of aperiodic monoids with central idempotents”, Port. Math., 68 (2011), 425–429 | DOI | MR | Zbl
[7] E. W. H. Lee, “Maximal Specht varieties of monoids”, Mosc. Math. J., 12 (2012), 787–802 | MR | Zbl
[8] E. W. H. Lee, “Varieties generated by 2-testable monoids”, Studia Sci. Math. Hungar., 49 (2012), 366–389 | MR | Zbl
[9] E. W. H. Lee, “Almost Cross varieties of aperiodic monoids with central idempotents”, Beitr. Algebra Geom., 54 (2013), 121–129 | DOI | MR | Zbl
[10] P. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11 (1969), 298–314 | DOI | MR | Zbl
[11] O. Sapir, “Finitely based words”, Internat. J. Algebra Comput., 10 (2000), 457–480 | MR | Zbl
[12] O. Sapir, “The variety of idempotent semigroups is inherently non-finitely generated”, Semigroup Forum, 71 (2005), 140–146 | DOI | MR | Zbl
[13] H. Straubing, “The variety generated by finite nilpotent monoids”, Semigroup Forum, 24 (1982), 25–38 | DOI | MR | Zbl