Inherently non-finitely generated varieties of aperiodic monoids with central idempotents
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 166-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathscr A$ denote the class of aperiodic monoids with central idempotents. A subvariety of $\mathscr A$ that is not contained in any finitely generated subvariety of $\mathscr A$ is said to be inherently non-finitely generated. A characterization of inherently non-finitely generated subvarieties of $\mathscr A$, based on identities that they cannot satisfy and monoids that they must contain, is given. It turns out that there exists a unique minimal inherently non-finitely generated subvariety of $\mathscr A$, the inclusion of which is both necessary and sufficient for a subvariety of $\mathscr A$ to be inherently non-finitely generated. Further, it is decidable in polynomial time if a finite set of identities defines an inherently non-finitely generated subvariety of $\mathscr A$.
@article{ZNSL_2014_423_a8,
     author = {Edmond W. H. Lee},
     title = {Inherently non-finitely generated varieties of aperiodic monoids with central idempotents},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--182},
     year = {2014},
     volume = {423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/}
}
TY  - JOUR
AU  - Edmond W. H. Lee
TI  - Inherently non-finitely generated varieties of aperiodic monoids with central idempotents
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 166
EP  - 182
VL  - 423
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/
LA  - en
ID  - ZNSL_2014_423_a8
ER  - 
%0 Journal Article
%A Edmond W. H. Lee
%T Inherently non-finitely generated varieties of aperiodic monoids with central idempotents
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 166-182
%V 423
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/
%G en
%F ZNSL_2014_423_a8
Edmond W. H. Lee. Inherently non-finitely generated varieties of aperiodic monoids with central idempotents. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 166-182. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a8/

[1] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York, 1981 | MR | Zbl

[2] M. Jackson, “On the finite basis problem for finite Rees quotients of free monoids”, Acta Sci. Math. (Szeged), 67 (2001), 121–159 | MR | Zbl

[3] M. Jackson, “Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 70 (2005), 159–187 | DOI | MR | Zbl

[4] M. Jackson, O. Sapir, “Finitely based, finite sets of words”, Internat. J. Algebra Comput., 10 (2000), 683–708 | MR | Zbl

[5] E. W. H. Lee, “Finitely generated limit varieties of aperiodic monoids with central idempotents”, J. Algebra Appl., 8 (2009), 779–796 | DOI | MR | Zbl

[6] E. W. H. Lee, “Cross varieties of aperiodic monoids with central idempotents”, Port. Math., 68 (2011), 425–429 | DOI | MR | Zbl

[7] E. W. H. Lee, “Maximal Specht varieties of monoids”, Mosc. Math. J., 12 (2012), 787–802 | MR | Zbl

[8] E. W. H. Lee, “Varieties generated by 2-testable monoids”, Studia Sci. Math. Hungar., 49 (2012), 366–389 | MR | Zbl

[9] E. W. H. Lee, “Almost Cross varieties of aperiodic monoids with central idempotents”, Beitr. Algebra Geom., 54 (2013), 121–129 | DOI | MR | Zbl

[10] P. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11 (1969), 298–314 | DOI | MR | Zbl

[11] O. Sapir, “Finitely based words”, Internat. J. Algebra Comput., 10 (2000), 457–480 | MR | Zbl

[12] O. Sapir, “The variety of idempotent semigroups is inherently non-finitely generated”, Semigroup Forum, 71 (2005), 140–146 | DOI | MR | Zbl

[13] H. Straubing, “The variety generated by finite nilpotent monoids”, Semigroup Forum, 24 (1982), 25–38 | DOI | MR | Zbl