Two-term tilting complexes over Brauer tree algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 132-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, two-term tilting complexes over a Brauer tree algebra with multiplicity one are described using a classification of indecomposable two-term partial tilting complexes obtained earlier in a joint paper with M. Antipov. The endomorphism rings of such complexes are computed.
@article{ZNSL_2014_423_a7,
     author = {A. O. Zvonareva},
     title = {Two-term tilting complexes over {Brauer} tree algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--165},
     year = {2014},
     volume = {423},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/}
}
TY  - JOUR
AU  - A. O. Zvonareva
TI  - Two-term tilting complexes over Brauer tree algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 132
EP  - 165
VL  - 423
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/
LA  - ru
ID  - ZNSL_2014_423_a7
ER  - 
%0 Journal Article
%A A. O. Zvonareva
%T Two-term tilting complexes over Brauer tree algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 132-165
%V 423
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/
%G ru
%F ZNSL_2014_423_a7
A. O. Zvonareva. Two-term tilting complexes over Brauer tree algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 132-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/

[1] R. Rouquier, A. Zimmermann, “Picard groups for derived module categories”, Proc. London Math. Soc. (3), 87:1 (2003), 197–225 | DOI | MR | Zbl

[2] I. Muchtadi-Alamsyah, “Braid action on derived category of Nakayama algebras”, Comm. Algebra, 36:7 (2008), 2544–2569 | DOI | MR | Zbl

[3] M. Schaps, E. Zakay-Illouz, “Braid group action on the refolded tilting complex of the Brauer star algebra”, Proceedings ICRA IX, v. 2, Beijing, 2002, 434–449 | MR | Zbl

[4] H. Abe, M. Hoshino, “On derived equivalences for selfinjective algebras”, Comm. Algebra, 34:12 (2006), 4441–4452 | DOI | MR | Zbl

[5] T. Adachi, O. Iyama, I. Reiten, “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452 ; (2012), arXiv: 1210.1036 | MR

[6] A. Chan, Two-term tilting complexes of Brauer star algebra and simple-minded systems, 2013, arXiv: 1304.5223

[7] M. A. Antipov, A. O. Zvonarëva, “Chastichno naklonyayuschie dvuchlennye kompleksy nad algebrami, sootvetstvuyuschimi derevyam Brauera”, Zap. nauchn. semin. POMI, 413, 2013, 5–25

[8] I. M. Gelfand, V. A. Ponomarev, “Nerazlozhimye predstavleniya gruppy Lorentsa”, UMN, 23:2(140) (1968), 3–60 | MR | Zbl

[9] B. Wald, J. Waschbüsch, “Tame biserial algebras”, J. Algebra, 95 (1985), 480–500 | DOI | MR | Zbl

[10] J. Rickard, “Derived categories and stable equivalence”, J. Pure Appl. Algebra, 61 (1989), 303–317 | DOI | MR | Zbl

[11] P. Gabriel, C. Riedtmann, “Group representations without groups”, Comment. Math. Helv., 54 (1979), 240–287 | DOI | MR | Zbl

[12] D. Happel, “Auslander–Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., 112 (1991), 641–648 | DOI | MR | Zbl

[13] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl