@article{ZNSL_2014_423_a7,
author = {A. O. Zvonareva},
title = {Two-term tilting complexes over {Brauer} tree algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--165},
year = {2014},
volume = {423},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/}
}
A. O. Zvonareva. Two-term tilting complexes over Brauer tree algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 132-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a7/
[1] R. Rouquier, A. Zimmermann, “Picard groups for derived module categories”, Proc. London Math. Soc. (3), 87:1 (2003), 197–225 | DOI | MR | Zbl
[2] I. Muchtadi-Alamsyah, “Braid action on derived category of Nakayama algebras”, Comm. Algebra, 36:7 (2008), 2544–2569 | DOI | MR | Zbl
[3] M. Schaps, E. Zakay-Illouz, “Braid group action on the refolded tilting complex of the Brauer star algebra”, Proceedings ICRA IX, v. 2, Beijing, 2002, 434–449 | MR | Zbl
[4] H. Abe, M. Hoshino, “On derived equivalences for selfinjective algebras”, Comm. Algebra, 34:12 (2006), 4441–4452 | DOI | MR | Zbl
[5] T. Adachi, O. Iyama, I. Reiten, “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452 ; (2012), arXiv: 1210.1036 | MR
[6] A. Chan, Two-term tilting complexes of Brauer star algebra and simple-minded systems, 2013, arXiv: 1304.5223
[7] M. A. Antipov, A. O. Zvonarëva, “Chastichno naklonyayuschie dvuchlennye kompleksy nad algebrami, sootvetstvuyuschimi derevyam Brauera”, Zap. nauchn. semin. POMI, 413, 2013, 5–25
[8] I. M. Gelfand, V. A. Ponomarev, “Nerazlozhimye predstavleniya gruppy Lorentsa”, UMN, 23:2(140) (1968), 3–60 | MR | Zbl
[9] B. Wald, J. Waschbüsch, “Tame biserial algebras”, J. Algebra, 95 (1985), 480–500 | DOI | MR | Zbl
[10] J. Rickard, “Derived categories and stable equivalence”, J. Pure Appl. Algebra, 61 (1989), 303–317 | DOI | MR | Zbl
[11] P. Gabriel, C. Riedtmann, “Group representations without groups”, Comment. Math. Helv., 54 (1979), 240–287 | DOI | MR | Zbl
[12] D. Happel, “Auslander–Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., 112 (1991), 641–648 | DOI | MR | Zbl
[13] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl