Elementary abelian conductor
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 126-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to ramification theory for a class of complete discrete valuation fields that includes $2$-dimensional local fields of prime characteristic $p$. It is proved that any finite extension of such a field can be modified into an extension with zero ramification depth by means of an infinite elementary abelian base change.
@article{ZNSL_2014_423_a6,
     author = {I. B. Zhukov},
     title = {Elementary abelian conductor},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {423},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/}
}
TY  - JOUR
AU  - I. B. Zhukov
TI  - Elementary abelian conductor
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 126
EP  - 131
VL  - 423
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/
LA  - ru
ID  - ZNSL_2014_423_a6
ER  - 
%0 Journal Article
%A I. B. Zhukov
%T Elementary abelian conductor
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 126-131
%V 423
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/
%G ru
%F ZNSL_2014_423_a6
I. B. Zhukov. Elementary abelian conductor. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 126-131. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/