Elementary abelian conductor
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 126-131
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to ramification theory for a class of complete discrete valuation fields that includes $2$-dimensional local fields of prime characteristic $p$. It is proved that any finite extension of such a field can be modified into an extension with zero ramification depth by means of an infinite elementary abelian base change.
@article{ZNSL_2014_423_a6,
author = {I. B. Zhukov},
title = {Elementary abelian conductor},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--131},
year = {2014},
volume = {423},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/}
}
I. B. Zhukov. Elementary abelian conductor. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 126-131. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a6/
[1] I. B. Zhukov, “Vetvlenie elementarno abelevykh rasshirenii”, Zap. nauchn. semin. POMI, 413, 2013, 106–114 | MR
[2] L. Xiao, I. Zhukov, Ramification in the imperfect residue field case, approaches and questions, Preprint, , 2013 http://math.usask.ca/fvk/Xiao-Zhukov.pdf
[3] E. F. Lysenko, “Vetvlenie tsiklicheskogo rasshireniya stepeni $p^2$ polnogo diskretno normirovannogo polya prostoi kharakteristiki $p$ s nesovershennym polem vychetov”, Zap. nauchn. semin. POMI, 413, 2013, 153–172 | MR