Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 105-112
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we compute the normalizer $N(\sigma)$ of an elementary net group $E(\sigma)$ associated with non-split maximal torus $T(d)$ in the general linear group $GL(n,k)$ over a field $k$ of odd characteristic. The non-split maximal torus $T=T(d)$ is provided by a radical extension $k(\sqrt[n]d)$ of degree $n$ of the ground field $k$ (minisotropic torus).
@article{ZNSL_2014_423_a4,
author = {N. A. Dzhusoeva and V. A. Koibaev},
title = {Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--112},
publisher = {mathdoc},
volume = {423},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/}
}
TY - JOUR AU - N. A. Dzhusoeva AU - V. A. Koibaev TI - Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 105 EP - 112 VL - 423 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/ LA - ru ID - ZNSL_2014_423_a4 ER -
%0 Journal Article %A N. A. Dzhusoeva %A V. A. Koibaev %T Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 105-112 %V 423 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/ %G ru %F ZNSL_2014_423_a4
N. A. Dzhusoeva; V. A. Koibaev. Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 105-112. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/