Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 105-112

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we compute the normalizer $N(\sigma)$ of an elementary net group $E(\sigma)$ associated with non-split maximal torus $T(d)$ in the general linear group $GL(n,k)$ over a field $k$ of odd characteristic. The non-split maximal torus $T=T(d)$ is provided by a radical extension $k(\sqrt[n]d)$ of degree $n$ of the ground field $k$ (minisotropic torus).
@article{ZNSL_2014_423_a4,
     author = {N. A. Dzhusoeva and V. A. Koibaev},
     title = {Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {423},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - V. A. Koibaev
TI  - Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 105
EP  - 112
VL  - 423
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/
LA  - ru
ID  - ZNSL_2014_423_a4
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A V. A. Koibaev
%T Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 105-112
%V 423
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/
%G ru
%F ZNSL_2014_423_a4
N. A. Dzhusoeva; V. A. Koibaev. Normalizer of an elementary net group associated with a~non-split torus in the general linear group over a~field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 105-112. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a4/