Hochschild cohomology for algebras of dihedral type.~IV. The family~$D(2\mathcal B)(k,s,0)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 67-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the Hochschild cohomology groups for algebras of dihedral type which are contained in the family $D(2\mathcal B)(k,s,c)$ (from the famous K. Erdmann's classification) in the case where the parameter $c$ included in defining relations of algebras from this family is equal to zero. The calculation relies upon a construction of the bimodule resolution for algebras from the above family.
@article{ZNSL_2014_423_a3,
     author = {A. I. Generalov and N. Yu. Kosovskaia},
     title = {Hochschild cohomology for algebras of dihedral {type.~IV.} {The} family~$D(2\mathcal B)(k,s,0)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--104},
     publisher = {mathdoc},
     volume = {423},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - N. Yu. Kosovskaia
TI  - Hochschild cohomology for algebras of dihedral type.~IV. The family~$D(2\mathcal B)(k,s,0)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 67
EP  - 104
VL  - 423
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a3/
LA  - ru
ID  - ZNSL_2014_423_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%A N. Yu. Kosovskaia
%T Hochschild cohomology for algebras of dihedral type.~IV. The family~$D(2\mathcal B)(k,s,0)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 67-104
%V 423
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a3/
%G ru
%F ZNSL_2014_423_a3
A. I. Generalov; N. Yu. Kosovskaia. Hochschild cohomology for algebras of dihedral type.~IV. The family~$D(2\mathcal B)(k,s,0)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 67-104. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a3/