Homomorphisms and involutions of unramified henselian division algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 264-275
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be a henselian field with the residue field $\overline K$, and let $\mathcal A_1$, $\mathcal A_2$ be finite dimensional division unramified $K$-algebras with residue algebras $\overline{\mathcal A}_1$ and $\overline{\mathcal A}_2$. Further, let $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ be the set of nonzero $K$-homomorphisms from $\mathcal A_1$ to $\mathcal A_2$. We prove that there is a natural bijection between the set of nonzero $\overline K$-homomorphisms from $\overline{\mathcal A}_1$ to $\overline{\mathcal A}_2$ and the factor set of $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ under the equivalence relation: $\phi_1\sim\phi_2$ $\Leftrightarrow$ there exists $m\in1+M_{\mathcal A_2}$ such that $\phi_2=\phi_1i_m$, where $i_m$ is the inner automorphism of $\mathcal A_2$ induced by $m$. A similar result is obtained for unramified algebras with involutions.
@article{ZNSL_2014_423_a12,
author = {S. V. Tikhonov and V. I. Yanchevskii},
title = {Homomorphisms and involutions of unramified henselian division algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {264--275},
year = {2014},
volume = {423},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a12/}
}
S. V. Tikhonov; V. I. Yanchevskii. Homomorphisms and involutions of unramified henselian division algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 264-275. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a12/
[1] Dzh. Kassels, A. Frëlikh, Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR
[2] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR
[3] V. I. Yanchevskii, “Privedennaya unitarnaya K-teoriya i tela nad genzelevymi diskretno normirovannymi polyami”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 879–918 | MR | Zbl
[4] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., 24, AMS, Providence, 1961
[5] C. Riehm, “The corestriction of algebraic structures”, Invent. Math., 11 (1970), 73–98 | DOI | MR | Zbl
[6] B. Jacob, A. Wadsworth, “Division algebras over Henselian fields”, J. Algebra, 128:1 (1990), 126–179 | DOI | MR | Zbl
[7] D. J. Saltman, Lectures on division algebras, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl