Homomorphisms and involutions of unramified henselian division algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 264-275
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a henselian field with the residue field $\overline K$, and let $\mathcal A_1$, $\mathcal A_2$ be finite dimensional division unramified $K$-algebras with residue algebras $\overline{\mathcal A}_1$ and $\overline{\mathcal A}_2$. Further, let $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ be the set of nonzero $K$-homomorphisms from $\mathcal A_1$ to $\mathcal A_2$. We prove that there is a natural bijection between the set of nonzero $\overline K$-homomorphisms from $\overline{\mathcal A}_1$ to $\overline{\mathcal A}_2$ and the factor set of $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ under the equivalence relation: $\phi_1\sim\phi_2$ $\Leftrightarrow$ there exists $m\in1+M_{\mathcal A_2}$ such that $\phi_2=\phi_1i_m$, where $i_m$ is the inner automorphism of $\mathcal A_2$ induced by $m$.
A similar result is obtained for unramified algebras with involutions.
@article{ZNSL_2014_423_a12,
author = {S. V. Tikhonov and V. I. Yanchevskii},
title = {Homomorphisms and involutions of unramified henselian division algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {264--275},
publisher = {mathdoc},
volume = {423},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a12/}
}
TY - JOUR AU - S. V. Tikhonov AU - V. I. Yanchevskii TI - Homomorphisms and involutions of unramified henselian division algebras JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 264 EP - 275 VL - 423 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a12/ LA - ru ID - ZNSL_2014_423_a12 ER -
S. V. Tikhonov; V. I. Yanchevskii. Homomorphisms and involutions of unramified henselian division algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 264-275. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a12/