@article{ZNSL_2014_423_a11,
author = {A. V. Stepanov},
title = {Non-Abelian $K$-theory for {Chevalley} groups over rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {244--263},
year = {2014},
volume = {423},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/}
}
A. V. Stepanov. Non-Abelian $K$-theory for Chevalley groups over rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 244-263. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/
[1] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. MIAN, 165, 1984, 24–42 | MR | Zbl
[2] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. S.-Peterburg. un-ta. Ser. 1, Mat., Mekh., Astronom., 2008, no. 1, 9–14 | Zbl
[3] N. A. Vavilov, A. V. Stepanov, “Esche raz o standartnoi kommutatsionnoi formule”, Vestn. S.-Peterburg. un-ta. Ser. 1, Mat., Mekh., Astronom., 2010, no. 1, 16–22 | MR | Zbl
[4] L. N. Vasershtein, A. A. Suslin, “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $K$-teoriya”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 993–1054 | MR | Zbl
[5] V. I. Kopeiko, “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. Sb., 106(148):1 (1978), 94–107 | MR | Zbl
[6] V. I. Kopeiko, A. A. Suslin, “O kvadratichiykh modulyakh nad koltsami mnogochleov”, Zap. nauchn. semin. LOMI, 86, 1979, 114–124 | MR | Zbl
[7] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy v izotropnykh reduktivnykh gruppakh”, Algebra i analiz, 20:4 (2008), 160–188 | MR | Zbl
[8] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 235–252 | MR | Zbl
[9] A. A. Suslin, V. I. Kopeiko, “Kvadratichnye moduli i ortogonalnaya gruppa nad koltsami mnogochlenov”, Zap. nauchn. semin. LOMI, 71, 1977, 216–250 | MR | Zbl
[10] M. S. Tulenbaev, “Multiplikator shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauchn. semin. LOMI, 86, 1979, 162–169 | MR | Zbl
[11] S. G. Khlebutin, “Dostatochnye usloviya normalnosti podgruppy elementarnykh matrits”, UMN, 39:3 (1984), 245–246 | MR | Zbl
[12] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl
[13] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl
[14] H. Apte, P. Chattopadhyay, R. Rao, “A local global theorem for extended ideals”, J. Ramanujan Math. Soc., 27:1 (2012), 17–30 | MR
[15] H. Apte, A. Stepanov, “A local global theorem for extended ideals”, Cent. Eur. J. Math. (to appear)
[16] A. Bak, “Nonabelian $K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[17] A. Bak, Lectures on dimension theory, group valued functors, and nonstable $K$-theory, Preprint, Buenos Aires, 1995
[18] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $K_1$ is nilpotent”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[19] A. Bak, A. V. Stepanov, “Dimension theory and nonstable $K$-theory for net groups”, Rend. Semin. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl
[20] A. Bak, N. A. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[21] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[22] F. Grunewald, J. Mennicke, L. Vaserstein, “On symplectic groups over polynomial rings”, Math. Z., 206 (1991), 35–56 | DOI | MR | Zbl
[23] R. Hazrat, “Dimension theory and nonstable $K_1$ of quadratic modules”, K-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl
[24] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[25] R. Hazrat, N. Vavilov, Z. Zhang, Generation of relative commutator subgroups in Chevalley groups, Preprint, 2012, arXiv: 1212.5432
[26] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl
[27] R. Hazrat, Z. Zhang, “Generalized commutator formula”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[28] R. Hazrat, Z. Zhang, “Multiple commutator formulas”, Israel J. Math., 195:1 (2013), 481–505 | DOI | MR | Zbl
[29] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl
[30] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[31] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl
[32] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, K-Theory, 17 (1999), 295–302 | DOI | MR | Zbl
[33] M. R. Stein, “Generators, relations, and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl
[34] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Research in Math., 9 (2013), 79–95 | MR | Zbl
[35] A. Stepanov, N. Vavilov, “Length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl
[36] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. K-Theory (to appear)
[37] G. Taddei, “Normalitédes groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55 (1986), 693–710 | DOI | MR | Zbl
[38] J. Tits, “Systemes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér. A, 283 (1976), 693–695 | MR | Zbl
[39] L. N. Vaserstein, “On the normal subgroups of $\mathrm{GL}_n$ over a ring”, Lecture Notes in Math., 854, 1981, 456–465 | DOI | MR | Zbl
[40] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 38 (1986), 219–230 | DOI | MR | Zbl