Non-Abelian $K$-theory for Chevalley groups over rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 244-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We announce some results on the structure of Chevalley groups $G(R)$ over a commutative ring $R$ recently obtained by the author. The following results are generalized and improved: (1) Relative local-global principle. (2) Generators of relative elementary subgroups. (3) Relative multi-commutator formulas. (4) Nilpotent structure of relative $\mathrm K_1$. (5) Boundedness of commutator length. \noindent The proof of first two items is based on computations with generators of the elementary subgroups translated into the language of parabolic subgroups. For the proof of the further ones we enlarge the relative elementary subgroup, construct a generic element, and use localization in a universal ring.
@article{ZNSL_2014_423_a11,
     author = {A. V. Stepanov},
     title = {Non-Abelian $K$-theory for {Chevalley} groups over rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--263},
     year = {2014},
     volume = {423},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/}
}
TY  - JOUR
AU  - A. V. Stepanov
TI  - Non-Abelian $K$-theory for Chevalley groups over rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 244
EP  - 263
VL  - 423
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/
LA  - ru
ID  - ZNSL_2014_423_a11
ER  - 
%0 Journal Article
%A A. V. Stepanov
%T Non-Abelian $K$-theory for Chevalley groups over rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 244-263
%V 423
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/
%G ru
%F ZNSL_2014_423_a11
A. V. Stepanov. Non-Abelian $K$-theory for Chevalley groups over rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 244-263. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a11/

[1] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. MIAN, 165, 1984, 24–42 | MR | Zbl

[2] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. S.-Peterburg. un-ta. Ser. 1, Mat., Mekh., Astronom., 2008, no. 1, 9–14 | Zbl

[3] N. A. Vavilov, A. V. Stepanov, “Esche raz o standartnoi kommutatsionnoi formule”, Vestn. S.-Peterburg. un-ta. Ser. 1, Mat., Mekh., Astronom., 2010, no. 1, 16–22 | MR | Zbl

[4] L. N. Vasershtein, A. A. Suslin, “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $K$-teoriya”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 993–1054 | MR | Zbl

[5] V. I. Kopeiko, “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. Sb., 106(148):1 (1978), 94–107 | MR | Zbl

[6] V. I. Kopeiko, A. A. Suslin, “O kvadratichiykh modulyakh nad koltsami mnogochleov”, Zap. nauchn. semin. LOMI, 86, 1979, 114–124 | MR | Zbl

[7] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy v izotropnykh reduktivnykh gruppakh”, Algebra i analiz, 20:4 (2008), 160–188 | MR | Zbl

[8] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 235–252 | MR | Zbl

[9] A. A. Suslin, V. I. Kopeiko, “Kvadratichnye moduli i ortogonalnaya gruppa nad koltsami mnogochlenov”, Zap. nauchn. semin. LOMI, 71, 1977, 216–250 | MR | Zbl

[10] M. S. Tulenbaev, “Multiplikator shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauchn. semin. LOMI, 86, 1979, 162–169 | MR | Zbl

[11] S. G. Khlebutin, “Dostatochnye usloviya normalnosti podgruppy elementarnykh matrits”, UMN, 39:3 (1984), 245–246 | MR | Zbl

[12] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl

[13] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[14] H. Apte, P. Chattopadhyay, R. Rao, “A local global theorem for extended ideals”, J. Ramanujan Math. Soc., 27:1 (2012), 17–30 | MR

[15] H. Apte, A. Stepanov, “A local global theorem for extended ideals”, Cent. Eur. J. Math. (to appear)

[16] A. Bak, “Nonabelian $K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[17] A. Bak, Lectures on dimension theory, group valued functors, and nonstable $K$-theory, Preprint, Buenos Aires, 1995

[18] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $K_1$ is nilpotent”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[19] A. Bak, A. V. Stepanov, “Dimension theory and nonstable $K$-theory for net groups”, Rend. Semin. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[20] A. Bak, N. A. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[21] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[22] F. Grunewald, J. Mennicke, L. Vaserstein, “On symplectic groups over polynomial rings”, Math. Z., 206 (1991), 35–56 | DOI | MR | Zbl

[23] R. Hazrat, “Dimension theory and nonstable $K_1$ of quadratic modules”, K-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl

[24] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[25] R. Hazrat, N. Vavilov, Z. Zhang, Generation of relative commutator subgroups in Chevalley groups, Preprint, 2012, arXiv: 1212.5432

[26] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[27] R. Hazrat, Z. Zhang, “Generalized commutator formula”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[28] R. Hazrat, Z. Zhang, “Multiple commutator formulas”, Israel J. Math., 195:1 (2013), 481–505 | DOI | MR | Zbl

[29] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl

[30] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[31] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl

[32] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, K-Theory, 17 (1999), 295–302 | DOI | MR | Zbl

[33] M. R. Stein, “Generators, relations, and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl

[34] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Research in Math., 9 (2013), 79–95 | MR | Zbl

[35] A. Stepanov, N. Vavilov, “Length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl

[36] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. K-Theory (to appear)

[37] G. Taddei, “Normalitédes groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55 (1986), 693–710 | DOI | MR | Zbl

[38] J. Tits, “Systemes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér. A, 283 (1976), 693–695 | MR | Zbl

[39] L. N. Vaserstein, “On the normal subgroups of $\mathrm{GL}_n$ over a ring”, Lecture Notes in Math., 854, 1981, 456–465 | DOI | MR | Zbl

[40] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 38 (1986), 219–230 | DOI | MR | Zbl