Hochschild cohomology for self-injective algebras of tree class $D_n$. VI
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 33-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For $R$-bimodule $M$ with $k$-algebra structure and a compatible action of a finite group $G\le\mathrm{Aut}R$ we define algebra $\mathrm{HH}^*(R,M)^{G\uparrow}$. We construct an isomorphism between the algebras $\mathrm{HH^*(R)}$ and $\mathrm{HH}^*(\widetilde R,\widetilde R\#kG)^{G\uparrow}$ in the terms of bar-resolutions, where $\widetilde R=R\#kG^*$. Using these results, we calculate the Hochschild cohomology algebra for a family of self-injective algebras of tree class $D_n$.
@article{ZNSL_2014_423_a1,
     author = {Yu. V. Volkov},
     title = {Hochschild cohomology for self-injective algebras of tree class~$D_n${.~VI}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--56},
     year = {2014},
     volume = {423},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/}
}
TY  - JOUR
AU  - Yu. V. Volkov
TI  - Hochschild cohomology for self-injective algebras of tree class $D_n$. VI
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 33
EP  - 56
VL  - 423
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/
LA  - ru
ID  - ZNSL_2014_423_a1
ER  - 
%0 Journal Article
%A Yu. V. Volkov
%T Hochschild cohomology for self-injective algebras of tree class $D_n$. VI
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 33-56
%V 423
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/
%G ru
%F ZNSL_2014_423_a1
Yu. V. Volkov. Hochschild cohomology for self-injective algebras of tree class $D_n$. VI. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 33-56. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/

[1] M. Cohen, S. Montgomery, “Group-graded rings, smash product, and group actions”, Trans. Amer Math. Soc., 282 (1984), 237–258 | DOI | MR | Zbl

[2] D. Ştefan, “Hochschild cohomology on Hopf Galois extentions”, J. Pure Appl. Algebra, 103 (1995), 221–233 | DOI | MR | Zbl

[3] E. N. Marcos, R. Martínez-Villa, Ma. I. R. Martins, “Hochschild cohomology of skew group rings and invariants”, Central European J. Math., 2 (2004), 177–191 | DOI | MR

[4] A. V. Shepler, S. Witherspoon, “Group actions on algebras and the graded Lie structure of Hochschild cohomology”, J. Algebra, 351:1 (2012), 350–381 | DOI | MR | Zbl

[5] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. II”, Zap. nauchn. semin. POMI, 365, 2009, 63–121 | MR | Zbl

[6] Yu. V. Volkov, “Algebra kogomologii Khokhshilda dlya odnoi serii samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Algebra i Analiz, 23:5 (2011), 99–139 | MR

[7] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math. (2), 7 (1963), 267–288 | DOI | MR

[8] A. S. Dugas, “Periodic resolutions and self-injective algebras of finite type”, J. Pure Appl. Algebra, 241:6 (2010), 990–1000 | DOI | MR

[9] Yu. V. Volkov, “Klassy stabilnoi ekvivalentnosti samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Vestnik S.-Pb. un-ta, Ser. 1, Mat., mekh., astr., 2008, no. 1, 15–21 | Zbl