Hochschild cohomology for self-injective algebras of tree class~$D_n$.~VI
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 33-56
Voir la notice de l'article provenant de la source Math-Net.Ru
For $R$-bimodule $M$ with $k$-algebra structure and a compatible action of a finite group $G\le\mathrm{Aut}R$ we define algebra $\mathrm{HH}^*(R,M)^{G\uparrow}$. We construct an isomorphism between the algebras $\mathrm{HH^*(R)}$ and $\mathrm{HH}^*(\widetilde R,\widetilde R\#kG)^{G\uparrow}$ in the terms of bar-resolutions, where $\widetilde R=R\#kG^*$. Using these results, we calculate the Hochschild cohomology algebra for a family of self-injective algebras of tree class $D_n$.
@article{ZNSL_2014_423_a1,
author = {Yu. V. Volkov},
title = {Hochschild cohomology for self-injective algebras of tree class~$D_n${.~VI}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--56},
publisher = {mathdoc},
volume = {423},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/}
}
Yu. V. Volkov. Hochschild cohomology for self-injective algebras of tree class~$D_n$.~VI. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 33-56. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a1/