On the $(2,3)$-generation of hyperbolic symplectic groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 5-32

Voir la notice de l'article provenant de la source Math-Net.Ru

For any finitely generated, commutative ring $R$ and any sufficiently large $n$, we prove that the elementary hyperbolic symplectic group $\mathrm{ESp}_{2n}(R)$ can be generated by an involution and an element of order 3.
@article{ZNSL_2014_423_a0,
     author = {V. L. Vasilyev},
     title = {On the $(2,3)$-generation of hyperbolic symplectic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--32},
     publisher = {mathdoc},
     volume = {423},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/}
}
TY  - JOUR
AU  - V. L. Vasilyev
TI  - On the $(2,3)$-generation of hyperbolic symplectic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 32
VL  - 423
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/
LA  - ru
ID  - ZNSL_2014_423_a0
ER  - 
%0 Journal Article
%A V. L. Vasilyev
%T On the $(2,3)$-generation of hyperbolic symplectic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-32
%V 423
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/
%G ru
%F ZNSL_2014_423_a0
V. L. Vasilyev. On the $(2,3)$-generation of hyperbolic symplectic groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/