On the $(2,3)$-generation of hyperbolic symplectic groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 5-32
Voir la notice de l'article provenant de la source Math-Net.Ru
For any finitely generated, commutative ring $R$ and any sufficiently large $n$, we prove that the elementary hyperbolic symplectic group $\mathrm{ESp}_{2n}(R)$ can be generated by an involution and an element of order 3.
@article{ZNSL_2014_423_a0,
author = {V. L. Vasilyev},
title = {On the $(2,3)$-generation of hyperbolic symplectic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--32},
publisher = {mathdoc},
volume = {423},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/}
}
V. L. Vasilyev. On the $(2,3)$-generation of hyperbolic symplectic groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 26, Tome 423 (2014), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_423_a0/