Time-harmonic “complex source” wavefields and their sources in real space
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 131-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper concerns the complexified Green function of the 3D Helmholtz equation in the free space, which is interesting as an exact solution demonstrating Gaussian-beam behavior. This function involves a square root and satisfies an inhomogeneous Helmholtz equation, the right-hand side of which depends on the cut and on the branch of the root. We deal with the explicit description of this generalized function.
@article{ZNSL_2014_422_a6,
     author = {A. M. Tagirdzhanov and A. S. Blagovestchenskii and A. P. Kiselev},
     title = {Time-harmonic {\textquotedblleft}complex source{\textquotedblright} wavefields and their sources in real space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--149},
     year = {2014},
     volume = {422},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a6/}
}
TY  - JOUR
AU  - A. M. Tagirdzhanov
AU  - A. S. Blagovestchenskii
AU  - A. P. Kiselev
TI  - Time-harmonic “complex source” wavefields and their sources in real space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 131
EP  - 149
VL  - 422
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a6/
LA  - ru
ID  - ZNSL_2014_422_a6
ER  - 
%0 Journal Article
%A A. M. Tagirdzhanov
%A A. S. Blagovestchenskii
%A A. P. Kiselev
%T Time-harmonic “complex source” wavefields and their sources in real space
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 131-149
%V 422
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a6/
%G ru
%F ZNSL_2014_422_a6
A. M. Tagirdzhanov; A. S. Blagovestchenskii; A. P. Kiselev. Time-harmonic “complex source” wavefields and their sources in real space. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 131-149. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a6/

[1] A. A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izv. vuzov. Radiofizika, 13:9 (1970), 1380–1388

[2] G. A. Deschamps, “Gaussian beam as a bundle of complex rays”, Electron. Lett., 7:23 (1971), 684–685 | DOI

[3] L. B. Felsen, “Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams”, Symposia Matematica, Istituto Nazionale di Alta Matematica, 18, Academic Press, London, 1976, 40–56 | MR

[4] K. Luk, P. Yu, “Generation of Hermite–Gaussian beam modes by multipoles with complex source points”, J. Opt. Soc. Amer. A, 2:11 (1985), 1818–1820 | DOI | MR

[5] M. A. Bandres, J. C. Gutiérrez-Vega, “Higher-order complex source for elegant Laguerre–Gaussian waves”, Opt. Lett., 29:19 (2004), 2213–2215 | DOI

[6] R. Mahillo-Isla, M. J. González-Morales, C. Dehesa-Martínez, “Diffraction of 2D complex beams by a perfect conductor half-plane a spectral approach”, Proc. Days on Diffraction' 2007, St. Petersburg University Press, SPb, 2007, 67–72 | DOI

[7] A. M. Tagirdzhanov, “ ‘Kompleksnyi istochnik’ v dvumernom prostranstve”, Zap. nauchn. semin. POMI, 409, 2012, 176–186 | MR

[8] S. Y. Shin, L. B. Felsen, “Gaussian beam modes by multipoles with complex poins sources”, J. Opt. Soc. Amer., 67:5 (1977), 699–700 | DOI

[9] E. Heyman, L. B. Felsen, “Complex-source pulsed-beam fields”, J. Opt. Soc. Amer. A, 6:6 (1989), 806–817 | DOI

[10] E. Heyman, “Complex source pulsed beam representation of transient radiation”, Wave Motion, 11:4 (1989), 337–349 | DOI | MR | Zbl

[11] A. M. Tagirdzhanov, A. P. Kiselev, “Complexied spherical waves and their sources in the physical space”, Progress in Electromagnetics Research Symposium PIERS Proceedings, Stockholm, 2013, 270–273

[12] M. J. González-Morales, R. Mahillo-Isla, C. Dehesa-Martínez, E. Gago-Ribas, “Complex point source for the 3D Laplace operator”, Progress in Electromagnetics Research, 127 (2011), 445–459 | DOI

[13] P. E. Appell, “Quelques remarques sur la théorie des potentiels multiformes”, (Extrait d'une lettre adressée à Mr. F. Klein), Math. Annalen, 30 (1887), 155–156 | DOI | MR

[14] A. M. Tagirdzhanov, A. S. Blagovestchenskii, A. P. Kiselev, “ ‘Complex source’ wavefields: sources in real space”, J. Phys. A: Math. Theor., 44:42 (2011), pap. 425203 | DOI | MR

[15] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (Obzor)”, Optika i Spektroskopiya, 102:4 (2007), 661–681

[16] G. Kaiser, “Complex-distance potential theory, wave equations, and physical wavelets”, Math. Methods Appl. Sci., 25 (2002), 1577–1588 | DOI | MR | Zbl

[17] G. Kaiser, “Physical wavelets and their sources: real physics in complex spacetime”, J. Phys. A: Math. Gen., 36:30 (2003), R291–R338 | DOI | MR | Zbl

[18] A. M. Tagirdzhanov, A. S. Blagovestchenskii, A. P. Kiselev, “Complex source: Singularities in real space”, Progress in Electromagnetics Research Symposium PIERS Proceedings, Moscow, 2009, 1527–1530

[19] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[20] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[21] R. Boyack, J. Lekner, “Non-existence of separable spheroidal beams”, J. Opt., 13:8 (2011), pap. 085701 | DOI