Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 90-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss one of the main questions in band-gap engineering, namely by an asymptotic analysis it is proven that any given point of a certain interval in the spectrum of a cylindrical waveguide can be surrounded with a spectral gap by means of a periodical perturbation of the walls. Both the Dirichlet and Neumann boundary conditions for the Laplace operator are considered in planar and multi-dimensional waveguides.
@article{ZNSL_2014_422_a5,
     author = {S. A. Nazarov},
     title = {Gap opening around a~given point of the spectrum of a~cylindrical waveguide by means of gentle periodic perturbation of walls},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--130},
     year = {2014},
     volume = {422},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 90
EP  - 130
VL  - 422
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a5/
LA  - ru
ID  - ZNSL_2014_422_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 90-130
%V 422
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a5/
%G ru
%F ZNSL_2014_422_a5
S. A. Nazarov. Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 90-130. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a5/

[1] S. A. Nazarov, “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funkts. analiz i ego prilozh., 43:3 (2009), 92–95 | DOI | MR | Zbl

[2] S. A. Nazarov, “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sbornik, 201:4 (2010), 99–124 | DOI | MR | Zbl

[3] S. A. Nazarov, K. Ruotsalainen, J. Taskinen, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps”, Appl. Anal., 89:1 (2010), 109–124 | DOI | MR | Zbl

[4] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[6] P. A. Kuchment, “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl

[7] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Ch. 7, Frontiers Appl. Math., 22, SIAM, 2001, 207–272 | MR

[8] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., Springer, New York, 2008, 261–309 | DOI | MR

[9] M. M. Skriganov, Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 171, Nauka, Leningrad, 1985 | MR | Zbl

[10] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[11] P. Kuchment, Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl

[12] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Doklady AN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[13] S. A. Nazarov, “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izvestiya AN SSSR. Seriya matem., 45:1 (1981), 101–112 | MR | Zbl

[14] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[15] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[16] S. A. Nazarov, “Otkrytie lakuny v nepreryvnom spektre periodicheski vozmuschennogo volnovoda”, Matem. zametki, 87:5 (2010), 764–786 | DOI | MR | Zbl

[17] S. A. Nazarov, “Asimptotika spektralnykh lakun v regulyarno vozmuschennom periodicheskom volnovode”, Vestnik SPbGU. Ser. 1, 2013, no. 2(7), 54–63

[18] G. Cardone, S. A. Nazarov, C. Perugia, “A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface”, Math. Nachr., 283:9 (2010), 1222–1244 | DOI | MR | Zbl

[19] S. A. Nazarov, “Asimptoticheskii analiz lakun v spektre volnovoda, vozmuschennogo periodicheskim semeistvom malykh polostei”, Problemy matem. analiza, 66, 2012, 101–146 | Zbl

[20] F. L. Bakharev, S. A. Nazarov, K. M. Ruotsalainen, “A gap in the spectrum of the Neumann–Laplacian on a periodic waveguide”, Appl. Anal., 88 (2012), 1–17

[21] D. I. Borisov, K. V. Pankrashkin, “Otkrytie lakun i rasscheplenie kraev zon dlya volnovodov, soedinennykh periodicheskoi sistemoi malykh okon”, Matem. zametki, 93:5 (2013), 665–683 | DOI | Zbl

[22] D. Borisov, K. Pankrashkin, “Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones”, J. Phys. A: Math. Theor., 46 (2013), 1–18 | DOI | MR

[23] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. ob-va, 16, 1963, 209–292 | MR | Zbl

[24] J. Harrison, P. Kuchment, A. Sobolev, B. Winn, “On occurrence of spectral edges for periodic operators inside the Brillouin zone”, J. Phys. A, 40:27 (2007), 7597–7618 | DOI | MR | Zbl

[25] P. Exner, P. Kuchment, B. Winn, “On the location of spectral edges in $Z$-periodic media”, J. Phys. A, 43:47 (2010), id 474022 | MR

[26] J. Hadamard, “Mémoire sur le problème d'analyse relatif à l'éuilibre des plaques élastiques encastrées”, ØE uvres, 2 (1968), 515–631

[27] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[28] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl