Diffraction by grating consisting of screens with different height: new equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 62-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A 2D problem of diffraction of a plane wave by a grating consisting of screens of different heights is studied. The incident wave travels at a grazing incidence angle. The consideration is held in the parabolic approximation. Screens are supposed to be perfectly absorbing. Edge Green's functions of the problem are introduced. Embedding formula and a spectral equation are proven. An OE-equation for the unknown coefficient of spectral equation is derived. An evolution equation which describes dependence of the edge Green's functions on geometrical parameter of problem(screen height) is derived. An asymptotic estimation of the reflection coefficient is obtained by using the evolution equation.
@article{ZNSL_2014_422_a4,
     author = {A. I. Korol'kov and A. V. Shanin},
     title = {Diffraction by grating consisting of screens with different height: new equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {62--89},
     year = {2014},
     volume = {422},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a4/}
}
TY  - JOUR
AU  - A. I. Korol'kov
AU  - A. V. Shanin
TI  - Diffraction by grating consisting of screens with different height: new equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 62
EP  - 89
VL  - 422
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a4/
LA  - ru
ID  - ZNSL_2014_422_a4
ER  - 
%0 Journal Article
%A A. I. Korol'kov
%A A. V. Shanin
%T Diffraction by grating consisting of screens with different height: new equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 62-89
%V 422
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a4/
%G ru
%F ZNSL_2014_422_a4
A. I. Korol'kov; A. V. Shanin. Diffraction by grating consisting of screens with different height: new equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 62-89. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a4/

[1] L. A. Vainshtein, Otkrytye rezonatory i otkrytye volnovody, Sov. radio, M., 1966

[2] L. A. Vainshtein, Teoriya diffraktsii i metod faktorizatsii, Sov. radio, M., 1966

[3] E. D. Shabalina, N. V. Shirgina, A. V. Shanin, “High Frequency Modes in a Two Dimensional Rectangular Room with Windows”, Acoustical Physics, 56 (2010), 525–536 | DOI

[4] A. V. Shanin, “Weinstein's Diffraction Problem: Embedding Formula and Spectral Equation in Parabolic Approximation”, SIAM J. Appl. Math., 70 (2009), 1201–1218 | DOI | MR | Zbl

[5] A. V. Shanin, “Difraktsiya vysokochastotnoi volny na reshetke so slozhnym periodom pri skolzyaschem padenii”, Zap. nauch. sem. POMI, 409, 2012, 212–239 | MR

[6] J. Boersma, “On certain multiple integrals occuring in a waveguide scattering problem”, SIAM J. Math. Anal., 9 (1978), 377–393 | DOI | MR | Zbl

[7] C. M. Linton, P. Mciver, Handbook of Mathematical Techniques for Wave/Structure Interactions, Chapman Hall/CRC, 2001 | MR | Zbl