On transforms of divergence-free and curl-free fields, connected with inverse problems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 27-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study $M$- and $N$-transform acting correspondingly on divergence-free and curl-free vector fields on Riemannian manifold with boundary. These transforms arise in the study of inverse problems of electrodynamics and elasticity theory. A divergence-free field $y$ is mapped by $M$ to a field that is tangential to equidistants of the boundary. $N$-transform maps curl-free field to a field that is normal to equidistants. In preceding papers operators $M$ and $N$ were considered in case of smooth equidistants, which is realized in a small enough near-boundary layer. This allows to consider transforms of fields supported in such a layer; it was proved that $M$ and $N$ are unitary in corresponding spaces with $L_2$-norms. In one of the papers the case of fields on the whole manifold was considered, but almost all equidistants were supposed to be Lipschitz surfaces. It was proved that $M$ is coisometric (i.e., adjoint operator is isometric). In this paper, we obtain the same result for both transforms in the general case with no constraints on equidistants at all.
@article{ZNSL_2014_422_a2,
     author = {M. N. Demchenko},
     title = {On transforms of divergence-free and curl-free fields, connected with inverse problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--46},
     year = {2014},
     volume = {422},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a2/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - On transforms of divergence-free and curl-free fields, connected with inverse problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 27
EP  - 46
VL  - 422
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a2/
LA  - ru
ID  - ZNSL_2014_422_a2
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T On transforms of divergence-free and curl-free fields, connected with inverse problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 27-46
%V 422
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a2/
%G ru
%F ZNSL_2014_422_a2
M. N. Demchenko. On transforms of divergence-free and curl-free fields, connected with inverse problems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 27-46. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a2/

[1] M. I. Belishev, V. M. Isakov, L. N. Pestov, V. A. Sharafutdinov, “K rekonstruktsii metriki po vneshnim elektromagnitnym izmereniyam”, DAN RAN, 372:3 (2000), 298–300 | MR | Zbl

[2] M. I. Belishev, A. K. Glasman, “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl

[3] M. I. Belishev, “Ob unitarnom preobrazovanii v prostranstve $L_2(\Omega;\mathbb R^3)$, svyazannom s razlozheniem Veilya”, Zap. nauchn. semin. POMI, 275, 2001, 25–40 | MR | Zbl

[4] M. N. Demchenko, “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Zap. nauchn. semin. POMI, 370, 2009, 22–43

[5] M. N. Demchenko, “Dinamicheskaya trekhmernaya obratnaya zadacha dlya sistemy Maksvella”, Algebra i analiz, 23:6 (2011), 32–79 | MR

[6] G. Schwarz, Hodge decomposition – a method for solving boundary value problems, Lect Notes Math., 1607, Springer-Verlag, Berlin, 1995 | MR | Zbl

[7] T. Kato, Teoriya vozmuschenii lineinykh operatorov, M., 1972