@article{ZNSL_2014_422_a0,
author = {S. A. Avdonin and V. S. Mikhaylov},
title = {Spectral estimation problem in infinite dimensional spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2014},
volume = {422},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/}
}
S. A. Avdonin; V. S. Mikhaylov. Spectral estimation problem in infinite dimensional spaces. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/
[1] S. A. Avdonin, M. I. Belishev, “Boundary control and dynamical inverse problem for nonselfadjoint Sturm–Liouville operator”, Control Cybernetics, 26 (1996), 429–440 | MR
[2] S. A. Avdonin, A. S. Bulanova, “Boundary control approach to the spectral estimation problem. The case of multiple poles”, Math. Contr. Sign. Syst., 22:3 (2011), 245–265 | DOI | MR | Zbl
[3] S. A. Avdonin, A. S. Bulanova, D. Y. Nicolsky, “Boundary control approach to the spectral estimation problem. The case of simple poles”, Sampling Theory Signal Image Processing, 8:3 (2009), 225–248 | MR | Zbl
[4] S. A. Avdonin, S. A. Ivanov, Families of exponentials, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[5] S. A. Avdonin, V. S. Mikhaylov, K. Ramdani, “Reconstructing the potential for the 1D Schrödinger equation from boundary measurements”, IMA J. Math. Control Information, 31:1 (2014), 137–150 | DOI | Zbl
[6] S. A. Avdonin, F. Gesztesy, K. A. Makarov, “Spectral estimation and inverse initial boundary value problems”, Inv. Probl. Imaging, 4:1 (2010), 1–9 | DOI | MR | Zbl
[7] M. I. Belishev, “Recent progress in the boundary control method”, Inv. Probl., 23 (2007), R1–R67 | DOI | MR | Zbl
[8] M. I. Belishev, “On a relation between data of dynamic and spectral inverse problems”, J. Math. Sci. (N.Y.), 127 (2005), 1814–183 | DOI | MR
[9] I. Trooshin, M. Yamamoto, “Riesz basis of root vectors of a non-symmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 80:1–2 (2001), 19–51 | MR | Zbl
[10] I. Trooshin, M. Yamamoto, “Identification problem for a one-dimensional vibrating system”, Math. Methods Appl. Sci., 28:17 (2005), 2037–2059 | DOI | MR | Zbl