Spectral estimation problem in infinite dimensional spaces
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the generalized spectral estimation problem in infinite dimensional spaces. We solve this problem using the boundary control approach to inverse theory and provide an application to the initial boundary value problem for a hyperbolic system.
@article{ZNSL_2014_422_a0,
     author = {S. A. Avdonin and V. S. Mikhaylov},
     title = {Spectral estimation problem in infinite dimensional spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     year = {2014},
     volume = {422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - V. S. Mikhaylov
TI  - Spectral estimation problem in infinite dimensional spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 17
VL  - 422
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/
LA  - en
ID  - ZNSL_2014_422_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A V. S. Mikhaylov
%T Spectral estimation problem in infinite dimensional spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-17
%V 422
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/
%G en
%F ZNSL_2014_422_a0
S. A. Avdonin; V. S. Mikhaylov. Spectral estimation problem in infinite dimensional spaces. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/

[1] S. A. Avdonin, M. I. Belishev, “Boundary control and dynamical inverse problem for nonselfadjoint Sturm–Liouville operator”, Control Cybernetics, 26 (1996), 429–440 | MR

[2] S. A. Avdonin, A. S. Bulanova, “Boundary control approach to the spectral estimation problem. The case of multiple poles”, Math. Contr. Sign. Syst., 22:3 (2011), 245–265 | DOI | MR | Zbl

[3] S. A. Avdonin, A. S. Bulanova, D. Y. Nicolsky, “Boundary control approach to the spectral estimation problem. The case of simple poles”, Sampling Theory Signal Image Processing, 8:3 (2009), 225–248 | MR | Zbl

[4] S. A. Avdonin, S. A. Ivanov, Families of exponentials, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[5] S. A. Avdonin, V. S. Mikhaylov, K. Ramdani, “Reconstructing the potential for the 1D Schrödinger equation from boundary measurements”, IMA J. Math. Control Information, 31:1 (2014), 137–150 | DOI | Zbl

[6] S. A. Avdonin, F. Gesztesy, K. A. Makarov, “Spectral estimation and inverse initial boundary value problems”, Inv. Probl. Imaging, 4:1 (2010), 1–9 | DOI | MR | Zbl

[7] M. I. Belishev, “Recent progress in the boundary control method”, Inv. Probl., 23 (2007), R1–R67 | DOI | MR | Zbl

[8] M. I. Belishev, “On a relation between data of dynamic and spectral inverse problems”, J. Math. Sci. (N.Y.), 127 (2005), 1814–183 | DOI | MR

[9] I. Trooshin, M. Yamamoto, “Riesz basis of root vectors of a non-symmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 80:1–2 (2001), 19–51 | MR | Zbl

[10] I. Trooshin, M. Yamamoto, “Identification problem for a one-dimensional vibrating system”, Math. Methods Appl. Sci., 28:17 (2005), 2037–2059 | DOI | MR | Zbl