Spectral estimation problem in infinite dimensional spaces
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized spectral estimation problem in infinite dimensional spaces. We solve this problem using the boundary control approach to inverse theory and provide an application to the initial boundary value problem for a hyperbolic system.
@article{ZNSL_2014_422_a0,
     author = {S. A. Avdonin and V. S. Mikhaylov},
     title = {Spectral estimation problem in infinite dimensional spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {422},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - V. S. Mikhaylov
TI  - Spectral estimation problem in infinite dimensional spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 17
VL  - 422
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/
LA  - en
ID  - ZNSL_2014_422_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A V. S. Mikhaylov
%T Spectral estimation problem in infinite dimensional spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-17
%V 422
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/
%G en
%F ZNSL_2014_422_a0
S. A. Avdonin; V. S. Mikhaylov. Spectral estimation problem in infinite dimensional spaces. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 43, Tome 422 (2014), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2014_422_a0/