A note on the tangent bundle and Gauss functor of posets and manifolds
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 113-125

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle.
@article{ZNSL_2014_421_a8,
     author = {N. Mn\"ev},
     title = {A note on the tangent bundle and {Gauss} functor of posets and manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {421},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a8/}
}
TY  - JOUR
AU  - N. Mnëv
TI  - A note on the tangent bundle and Gauss functor of posets and manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 113
EP  - 125
VL  - 421
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a8/
LA  - en
ID  - ZNSL_2014_421_a8
ER  - 
%0 Journal Article
%A N. Mnëv
%T A note on the tangent bundle and Gauss functor of posets and manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 113-125
%V 421
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a8/
%G en
%F ZNSL_2014_421_a8
N. Mnëv. A note on the tangent bundle and Gauss functor of posets and manifolds. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 113-125. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a8/