@article{ZNSL_2014_421_a6,
author = {S. V. Duzhin and D. V. Pasechnik},
title = {Groups acting on necklaces and sandpile groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--93},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a6/}
}
S. V. Duzhin; D. V. Pasechnik. Groups acting on necklaces and sandpile groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 81-93. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a6/
[1] T. van Aardenne-Ehrenfest, N. G. de Bruijn, “Circuits and trees in oriented linear graphs”, Simon Stevin, 28 (1951), 203–217 | MR | Zbl
[2] V. I. Arnold, From Hilbert's superposition problem to dynamical dystems, Transcript of a Lecture given at Fields Institute in June 1997. Online at http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz
[3] Chan Swee Hong, Bachelor's Thesis, NTU, Singapore, 2012
[4] S. H. Chan, H. D. L. Hollmann, D. V. Pasechnik, “Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields”, Proc. EuroComb (2013), The Seventh European Conference on Combinatorics, Graph Theory and Applications, CRM Series, eds. J. Nešetřil, M. Pellegrini, Springer, 2013
[5] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012 ; Draft version online at http://www.pdmi.ras.ru/~duzhin/papers/cdbook | MR | Zbl
[6] S. Duzhin, An explicit expansion of the Drinfeld associator up to degree 12, Web publication http://www.pdmi.ras.ru/~arnsem/dataprog
[7] S. W. Golomb, “Irreducible polynomials, sy nchronization codes, primitive necklaces and the cyclotomic algebra”, Comb. Math. Appl., Proc. Conf. Univ. North Carolina, 1969, 358–370 | MR | Zbl
[8] Michael E. Hoffman, “The algebra of multiple harmonic series”, J. Algebra, 194 (1997), 477–495 | DOI | MR | Zbl
[9] L. Levine, “Sandpile groups and spanning trees of directed line graphs”, J. Combin. Theory Ser. A, 118:2 (2011), 350–364 | DOI | MR | Zbl
[10] L. Levine, J. Propp, “What is $\dots$ a sandpile?”, Notices Amer. Math. Soc., 57:8 (2010), 976–979 | MR | Zbl
[11] R. Lidl, H. Niederreiter, Finite Fields, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[12] Ch. Reutenauer, Free Lie Algebras, The Clarendon Press, 1993 | MR | Zbl
[13] Computer algebra system Sage, http://www.sagemath.org
[14] N. J. A. Sloane, Online encyclopaedia of integer sequences, http://oeis.org/
[15] E. Witt, “Treue Darstellung Liescher Ringe”, J. reine angew. Math., 177 (1937), 152–160 | Zbl