@article{ZNSL_2014_421_a4,
author = {A. M. Vershik},
title = {Intrinsic metric on graded graphs, standardness, and invariant measures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {58--67},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a4/}
}
A. M. Vershik. Intrinsic metric on graded graphs, standardness, and invariant measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 58-67. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a4/
[1] D. Aldous, “Representations for partially exchangeable arrays of random variables”, J. Multivariate Anal., 11:4 (1981), 581–598 | DOI | MR | Zbl
[2] L. V. Kantorovich, “On translocation of masses”, Dokl. Akad. Nauk SSSR, 37:7–8 (1942), 227–229
[3] A. M. Vershik, “Four definitions of the scale of an automorphism”, Funct. Anal. Appl., 7:3 (1973), 169–181 | DOI | MR | Zbl
[4] A. M. Vershik, “Description of invariant measures for the actions of some infinite-dimensional groups”, Dokl. Akad. Nauk SSSR, 218:4 (1974), 749–752 | MR | Zbl
[5] A. M. Vershik, “Theory of decreasing sequences of measurable partitions”, Algebra Analiz, 6:4 (1994), 1–68 | MR | Zbl
[6] A. M. Vershik, “Classification of measurable functions of several arguments, and invariantly distributed random matrices”, Funct. Anal. Appl., 36:2 (2002), 93–105 | DOI | MR | Zbl
[7] A. M. Vershik, “On classification of measurable functions of several variables”, J. Math. Sci., 190:3 (2013), 427–437 | DOI | MR | Zbl
[8] A. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9 | DOI | MR | Zbl
[9] A. M. Vershik, Smooth and non-smooth $AF$-algebras and problem on invariant measures, arXiv: 1304.2193
[10] A. M. Vershik, S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funkts. Anal. Prilozh., 15:4 (1981), 15–27 | MR | Zbl