An interacting particle process related to Young tableaux
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss a stochastic particle system consisting of a two-dimensional array of particles living in one space dimension. The stochastic evolution bears a certain similarity to Hammersley's process, and the particle interaction is governed by the combinatorics of Young tableaux.
@article{ZNSL_2014_421_a3,
     author = {A. Borodin and G. Olshanski},
     title = {An interacting particle process related to {Young} tableaux},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--57},
     year = {2014},
     volume = {421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a3/}
}
TY  - JOUR
AU  - A. Borodin
AU  - G. Olshanski
TI  - An interacting particle process related to Young tableaux
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 47
EP  - 57
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a3/
LA  - en
ID  - ZNSL_2014_421_a3
ER  - 
%0 Journal Article
%A A. Borodin
%A G. Olshanski
%T An interacting particle process related to Young tableaux
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 47-57
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a3/
%G en
%F ZNSL_2014_421_a3
A. Borodin; G. Olshanski. An interacting particle process related to Young tableaux. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 47-57. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a3/

[1] D. Aldous, P. Diaconis, “Hammersley's interacting particle process and longest increasing subsequences”, Prob. Theory Related Fields, 103 (1995), 199–213 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, “Stochastic dynamics related to Plancherel measure on partitions”, Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Translations – Series 2, 217, eds. V. Kaimanovich, A. Lodkin, 2006, 9–21 ; arXiv: math-ph/0402064 | MR | Zbl

[3] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135 (2006), 84–152 ; arXiv: math-ph/0409075 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary”, J. Funct. Anal., 263:1 (2012), 248–303 ; arXiv: 1009.2029 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “The Young bouquet and its boundary”, Moscow Math. J., 13:2 (2013), 191–230 ; arXiv: 1110.4458 | MR

[6] A. Borodin, G. Olshanski, “Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab., 18:75 (2013), 1–43 ; arXiv: 1303.2794 | MR

[7] M. H. A. Davis, “Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models”, J. Royal Stat. Soc. Ser. B, 46 (1984), 353–388 | MR | Zbl