@article{ZNSL_2014_421_a2,
author = {N. M. Bogoliubov and C. Malyshev},
title = {A combinatorial interpretation of the scalar products of state vectors of integrable models},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--46},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a2/}
}
TY - JOUR AU - N. M. Bogoliubov AU - C. Malyshev TI - A combinatorial interpretation of the scalar products of state vectors of integrable models JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 33 EP - 46 VL - 421 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a2/ LA - en ID - ZNSL_2014_421_a2 ER -
N. M. Bogoliubov; C. Malyshev. A combinatorial interpretation of the scalar products of state vectors of integrable models. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 33-46. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a2/
[1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1995 | MR | Zbl
[2] W. Fulton, Young Tableaux with Application to Representation Theory and Geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[3] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[4] G. Schehr, S. N. Majumdar, A. Comtet, P. J. Forrester, “Reunion probability of $N$ vicious walkers: typical and large fluctuations for large $N$”, J. Stat. Phys., 149 (2012), 385–410 | DOI | MR | Zbl
[5] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418 | DOI | MR
[6] A. Okounkov, “Symmetric functions and random partitions”, Symmetric Functions 2001, Surveys of Developments and Perspectives, NATO Science Series, 74, 2002, 223–252 | MR | Zbl
[7] K. Hikami, T. Imamura, “Vicious walkers and hook Young tableaux”, J. Phys. A: Math. Gen., 36 (2003), 3033–3048 | DOI | MR | Zbl
[8] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603 | DOI | MR | Zbl
[9] G. Téllez, P. J. Forrester, “Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma”, J. Stat. Phys., 148 (2012), 824–855 | DOI | MR | Zbl
[10] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415–9430 | DOI | MR | Zbl
[11] N. M. Bogoliubov, J. Timonen, “Correlation functions for a strongly coupled boson system and plane partitions”, Phil. Trans. Roy. Soc. A, 369 (2011), 1319–1333 | DOI | MR | Zbl
[12] N. M. Bogoliubov, “XX0 Heisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636–5643 | DOI | MR
[13] N. M. Bogoliubov, “The integrable models for the vicious and friendly walkers”, J. Math. Sci., 143 (2007), 2729–2737 | DOI | MR
[14] N. M. Bogoliubov, C. Malyshev, “The correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, Theor. Math. Phys., 159 (2009), 563–574 | DOI | MR | Zbl
[15] N. M. Bogoliubov, C. Malyshev, “The correlation functions of the XXZ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicioius walkers”, St. Petersburg Math. J., 22:3 (2011), 359–377 | DOI | MR | Zbl
[16] N. M. Bogoliubov, C. Malyshev, Correlation functions of the XXZ chain at zero anisotropy and enumeration of boxed plane partitions, PDMI preprint 19/2012 http://www.pdmi.ras.ru/preprint/2012/12-19.html
[17] L. D. Faddeev, “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Math. C, 1 (1980), 107–160; 40 Years in Mathematical Physics, v. 2, World Sci. Ser. 20th Century Math., World Sci., Singapore, 1995, 187–235 | DOI | MR
[18] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[19] G. Kuperberg, “Another proof of the alternating sign martrix conjecture”, Int. Math. Res. Notices, 1996 (1996), 139–150 | DOI | MR | Zbl
[20] A. Klimyk, K. Schmudgen, Quantum Groups and their Representations, Springer, Berlin, 1997 | MR | Zbl
[21] I. Gessel, X. G. Viennot, Determinants, paths, and plane partitions, Preprint, 1989
[22] I. Gessel, G. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58 (1985), 300–321 | DOI | MR | Zbl
[23] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, “Vicious walkers and Young tableaux I: without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123–8135 | DOI | MR | Zbl