A deterministic polynomial-time algorithm for the first Bertini theorem.~II
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 214-249

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a projective algebraic variety $W$ which is an irreducible component of a set of all common zeroes of a family of homogeneous polynomials of degrees less than $d$ in $n+1$ variables in zero-characteristic. Consider a linear system on $W$ given by homogeneous polynomials of degree $d'$. Under the conditions of the first Bertini theorem for $W$ and this linear system we show how to construct an irreducible divisor in general position from the statement of this theorem. This algorithm is deterministic and polynomial in $(dd')^n$ and the size of input. This paper is the second in the tree-part series.
@article{ZNSL_2014_421_a14,
     author = {A. L. Chistov},
     title = {A deterministic polynomial-time algorithm for the first {Bertini} {theorem.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--249},
     publisher = {mathdoc},
     volume = {421},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a14/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - A deterministic polynomial-time algorithm for the first Bertini theorem.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 214
EP  - 249
VL  - 421
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a14/
LA  - ru
ID  - ZNSL_2014_421_a14
ER  - 
%0 Journal Article
%A A. L. Chistov
%T A deterministic polynomial-time algorithm for the first Bertini theorem.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 214-249
%V 421
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a14/
%G ru
%F ZNSL_2014_421_a14
A. L. Chistov. A deterministic polynomial-time algorithm for the first Bertini theorem.~II. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 214-249. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a14/