The yoga of commutators: further applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 166-213
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we describe some recent applications of localisation methods to the study of commutators in the groups of points of algebraic and algebraic-like groups, such as $\mathrm{GL}(n,R)$, Bak's unitary groups $\mathrm{GU}(2l,R,\Lambda)$ and Chevalley groups $G(\Phi,R)$. In particular, we announce multiple relative commutator formula and general multiple relative commutator formula, as well as results on the bounded width of relative commutators in elementary generators. We also state some of the intermediate results as well as some corollaries of these results. At the end of the paper we attach an updated list of unsolved problems in the field.
@article{ZNSL_2014_421_a13,
author = {R. Hazrat and A. V. Stepanov and N. A. Vavilov and Z. Zhang},
title = {The yoga of commutators: further applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--213},
publisher = {mathdoc},
volume = {421},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/}
}
TY - JOUR AU - R. Hazrat AU - A. V. Stepanov AU - N. A. Vavilov AU - Z. Zhang TI - The yoga of commutators: further applications JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 166 EP - 213 VL - 421 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/ LA - en ID - ZNSL_2014_421_a13 ER -
R. Hazrat; A. V. Stepanov; N. A. Vavilov; Z. Zhang. The yoga of commutators: further applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 166-213. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/