The yoga of commutators: further applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 166-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we describe some recent applications of localisation methods to the study of commutators in the groups of points of algebraic and algebraic-like groups, such as $\mathrm{GL}(n,R)$, Bak's unitary groups $\mathrm{GU}(2l,R,\Lambda)$ and Chevalley groups $G(\Phi,R)$. In particular, we announce multiple relative commutator formula and general multiple relative commutator formula, as well as results on the bounded width of relative commutators in elementary generators. We also state some of the intermediate results as well as some corollaries of these results. At the end of the paper we attach an updated list of unsolved problems in the field.
@article{ZNSL_2014_421_a13,
     author = {R. Hazrat and A. V. Stepanov and N. A. Vavilov and Z. Zhang},
     title = {The yoga of commutators: further applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--213},
     year = {2014},
     volume = {421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/}
}
TY  - JOUR
AU  - R. Hazrat
AU  - A. V. Stepanov
AU  - N. A. Vavilov
AU  - Z. Zhang
TI  - The yoga of commutators: further applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 166
EP  - 213
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/
LA  - en
ID  - ZNSL_2014_421_a13
ER  - 
%0 Journal Article
%A R. Hazrat
%A A. V. Stepanov
%A N. A. Vavilov
%A Z. Zhang
%T The yoga of commutators: further applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 166-213
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/
%G en
%F ZNSL_2014_421_a13
R. Hazrat; A. V. Stepanov; N. A. Vavilov; Z. Zhang. The yoga of commutators: further applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 166-213. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a13/

[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR

[2] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl

[3] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[4] M. Akhavan-Malayeri, “Writing certain commutators as products of cubes in free groups”, J. Pure Appl. Algebra, 177:1 (2003), 1–4 | DOI | MR | Zbl

[5] M. Akhavan-Malayeri, “Writing commutators of commutators as products of cubes in groups”, Comm. Algebra, 37 (2009), 2142–2144 | DOI | MR | Zbl

[6] H. Apte, P. Chattopadhyay, R. A. Rao, “A local-global theorem for extended ideals”, J. Ramanujan Math. Soc., 27:1 (2012), 17–30 | MR

[7] H. Apte, A. Stepanov, Local-global principle for congruence subgroups of Chevalley groups, 2012, 9 pp., arXiv: ; Cent. Europ. J. Math., 12:6 (2014), 806–812 1211.3575v1[math.Ra] | DOI | MR

[8] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lecture Notes in Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR

[9] A. Bak, “Non-abelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[10] A. Bak, R. Basu, R. A. Rao, “Local-Global Principle for Transvection Groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl

[11] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[12] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm K$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[13] A. Bak, N. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[14] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[15] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR | Zbl

[16] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Inst. Hautes Études Sci. Publ. Math., 33 (1967), 59–133 | DOI | MR

[17] R. Basu, Topics in Classical Algebraic $K$-Theory, Ph. D. Thesis, 2006, 70 pp.

[18] R. Basu, On general quadratic group, 2012, 8 pp.

[19] R. Basu, Local-global principle for quadratic and hermitian groups and the nilpotence of $\mathrm K_1$, 2012, 18 pp.; Preliminary version:, arXiv: 0911.5237v1[math KT]

[20] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local global principle”, Commutative algebra and algebraic geometry, Contemp. Math., 390, Amer. Math. Soc., Providence, RI, 2005, 17–30 | DOI | MR | Zbl

[21] P. Chattopadhya, R. A. Rao, Excision and elementary symplectic action, 2012, 14 pp.

[22] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1991), 51–105 | MR

[23] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[24] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[25] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $\mathrm K$-theory, 2 (1989), 761–767 | DOI | MR | Zbl

[26] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl

[27] S. C. Geller, C. A. Weibel, “$\mathrm K_2$ measures excision for $\mathrm K_1$”, Proc. Amer. Math. Soc., 80:1 (1980), 1–9 | MR | Zbl

[28] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$”, J. Reine Angew. Math., 342 (1983), 12–34 | MR | Zbl

[29] S. C. Geller, C. A. Weibel, “Subroups of elementary and Steinberg groups of congruence level $I^2$”, J. Pure Appl. Algebra, 35 (1985), 123–132 | DOI | MR | Zbl

[30] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$, II”, $K$-Theory, 2:6 (1989), 753–760 | DOI | MR | Zbl

[31] V. N. Gerasimov, “The group of units of the free product of rings”, Math. Sbornik, 134(176):1 (1987), 42–65 | MR | Zbl

[32] R. M. Guralnick, G. Malle, “Products of conjugacy classes and fixed point spaces”, J. Amer. Math. Soc., 25:1 (2012), 77–121 | DOI | MR | Zbl

[33] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.

[34] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl

[35] A. J. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Springer, Berlin et al., 1989 | MR | Zbl

[36] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $\mathrm K$-theory, 27 (2002), 293–327 | DOI | MR

[37] R. Hazrat, On $K$-theory of classical-like groups, Doktorarbeit, Uni. Bielefeld, 2002, 62 pp. | MR

[38] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. $\mathrm K$-theory, 5 (2010), 603–618 | DOI | MR | Zbl

[39] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci. (N.Y.), 179:6 (2011), 662–678 | DOI | MR

[40] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[41] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, General multiple commutator formula, to appear, 2013

[42] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, On the length of commutators in unitary groups, to appear, 2013, 28 pp.

[43] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[44] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi)”, J. $K$-Theory, 4:1 (2009), 1–65 | MR | Zbl

[45] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[46] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in Chevalley groups, and applications”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[47] R. Hazrat, N. Vavilov, Zuhong Zhang, Multiple commutator formulas for unitary groups, 31 May 2012, arXiv: ; Adv. Math., Submitted 1205.6866v1[math.RA]

[48] R. Hazrat, N. Vavilov, Zuhong Zhang, Generation of relative commutator subgroups in Chevalley groups, 21 Dec. 2012, arXiv: ; Edinbourgh Math. J., Submitted 1212.5432v1[math.RA]

[49] R. Hazrat, N. Vavilov, Zuhong Zhang, The commutators of classical groups, ICTP preprint, Nonstable classical algebraic K-Theory (03–14 December 2012), 75 pp.

[50] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[51] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195:1 (2013), 481–505 | DOI | MR | Zbl

[52] D. A. Jackson, “Basic commutator in weights six and seven as relators”, Comm. Algebra, 36 (2008), 2905–2909 | DOI | MR | Zbl

[53] D. A. Jackson, A. M. Gaglione, D. Spellman, “Basic commutator as relators”, J. Group Theor., 5 (2001), 351–363 | MR

[54] D. A. Jackson, A. M. Gaglione, D. Spellman, “Weight five basic commutator as relators”, Contemp. Math., 511 (2010), 39–81 | DOI | MR | Zbl

[55] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[56] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lecture Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl

[57] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl

[58] L.-C. Kappe, R. F. Morse, “On commutators in groups”, Groups St. Andrews 2005, v. 2, C.U.P., 2007, 531–558 | MR | Zbl

[59] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl

[60] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34 (1978), 655–669 | DOI | MR | Zbl

[61] E. Kulikova, A. Stavrova, “Centralizer of the elementary subgroup of an isotropic reductive group”, Vestnik St. Petersburg Univ. Math., 46:1 (2013), 22–28 | DOI | MR | Zbl

[62] N. Kumar, R. A. Rao, Quillen–Suslin theory for a structure theorem for the elementary symplectic group, 2012, 15 pp., arXiv: 1203.2104v1[Math.AC]

[63] Tsit-Yuen Lam, Serre's problem on projective modules, Springer Verlag, Berlin et al., 2006 | MR

[64] M. Larsen, A. Shalev, “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466 | DOI | MR | Zbl

[65] M. Larsen, A. Shalev, Pham Huu Tiep, “The Waring problem for finite simple groups”, Ann. Math., 174 (2011), 1885–1950 | DOI | MR | Zbl

[66] Li Fuan, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, 3:3 (1987), 247–255 | DOI | MR | Zbl

[67] Li Fuan, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl

[68] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR

[69] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “The Ore conjecture”, J. Europ. Math. Soc., 12 (2010), 939–1008 | DOI | MR | Zbl

[70] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Commutators in finite quasisimple groups”, Bull. London Math. Soc., 43 (2011), 1079–1092 | DOI | MR | Zbl

[71] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Products of squares in finite simple groups”, Proc. Amer. Math. Soc., 43:6 (2012), 1079–1092 | MR

[72] A. Yu. Luzgarev, “Overgroups of $E(F_4,R)$ in $G(E_6,R)$”, St. Petersburg Math. J., 20:6 (2009), 955–981 | DOI | MR | Zbl

[73] A. Yu. Luzgarev, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR | Zbl

[74] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | MR

[75] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl

[76] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl

[77] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[78] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[79] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[80] V. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[81] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2003), 4752–4766 | DOI | MR

[82] V. A. Petrov, Overgroups of classical groups, Doktorarbeit, Univ. St.-Petersburg, 2005, 129 pp. (in Russian)

[83] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20:4 (2009), 625–644 | DOI | MR | Zbl

[84] R. A. Rao, Talks given at ICTP in the Discussion meeting on Nonstable classical algebraic $K$-theory, ICTP preprint, Nonstable classical algebraic $K$-theory (03–14 December 2012), 85 pp.

[85] Sh. Rosset, “The higher lower central series”, Israel J. Math., 73:3 (1991), 257–279 | DOI | MR | Zbl

[86] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-theory, 17 (1999), 295–302 | DOI | MR | Zbl

[87] A. Shalev, “Commutators, words, conjugacy classes, and character methods”, Turk. J. Math., 31 (2007), 131–148 | MR | Zbl

[88] A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. Math., 170:3 (2009), 1383–1416 | DOI | MR | Zbl

[89] A. Smolensky, B. Sury, N. Vavilov, “Gauss decomposition for Chevalley groups revisited”, Intern. J. Group Theory, 1:1 (2012), 3–16 | MR | Zbl

[90] A. Stavrova, Homotopy invariance of non-stable $\mathrm K_1$-functors, 2012, 27 pp., arXiv: ; J. $K$-theory (to appear) 1111.4664[math.AG]

[91] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[92] A. Stepanov, Structure of Chevalley groups via universal localisation, arXiv: 1303.6082

[93] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[94] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl

[95] A. Stepanov, N. Vavilov, You Hong, Overgroups of semi-simple subgroups: localisation approach, 2013, 43 pp., (to appear)

[96] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[97] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | Zbl

[98] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[99] R. G. Swan, “Excision in algebraic $\mathrm K$-theory”, J. Pure Appl. Algebra, 1:3 (1971), 221–252 | DOI | MR | Zbl

[100] G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève, 1985

[101] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | DOI | MR | Zbl

[102] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris Sér. A, 283 (1976), 693–695 | MR | Zbl

[103] M. S. Tulenbaev, “The Steinberg group of a polynomial ring”, Math. U.S.S.R. Sb., 45:1 (1983), 139–154 | DOI | MR | Zbl

[104] L. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[105] L. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[106] L. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[107] L. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[108] L. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[109] L. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[110] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory”, Math. USSR Izv., 10:5 (1976), 937–1001 | DOI | MR | Zbl

[111] L. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[112] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[113] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[114] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Rend. Sem. Mat. Univ. Padova, 204:1 (2000), 201–250 | MR

[115] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 373 (2009), 48–72 | MR

[116] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{Ep}(n,R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl

[117] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR

[118] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg Univ., ser. 1, 41:1 (2008), 5–8 | DOI | MR | Zbl

[119] N. A. Vavilov, A. V. Stepanov, “Overgroups of semi-simple groups”, Vestnik Samara State Univ., Ser. Nat. Sci., 2008, no. 3, 51–95 (in Russian) | MR

[120] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., ser. 1, 43:1 (2010), 12–17 | DOI | MR | Zbl

[121] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[122] N. A. Vavilov, Zuhong Zhang, Subnormal subgroups of Chevalley groups. I. Cases $\mathrm E_6$ and $\mathrm E_7$, 2013, 24 pp.

[123] T. Vorst, “Polynomial extensions and excision $\mathrm K_1$”, Math. Ann., 244 (1979), 193–204 | DOI | MR | Zbl

[124] M. Wendt, “$\mathbb A^1$-homotopy of Chevalley groups”, J. $K$-Theory, 5:2 (2010), 245–287 | MR | Zbl

[125] M. Wendt, “On homotopy invariance for homology of rank two groups”, J. Pure Appl. Algebra, 216:10 (2012), 2291–2301 | DOI | MR | Zbl

[126] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl

[127] Hong You, “On the solution to a question of D. G. James”, J. Northeast Normal Univ., 1982, no. 2, 39–44 (Chinese) | MR | Zbl

[128] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR

[129] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra, 216 (2012), 1040–1051 | DOI | MR | Zbl

[130] Zuhong Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.

[131] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | MR | Zbl

[132] Zuhong Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl