Classification of permutation fewnomials over simple finite fields
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 152-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present a method for permutation trinomials and quadrinomials enumeration based on various symmetries and algebraic properties for search space reduction. Using this method, we enumerated all permutation trinomials and quadrinomials for the prime finite fields with orders up to 3000 and 500 respectively. Based on the enumeration results, we stated a hypothesis about permutation polynomials classification over prime finite fields. We evaluated randomness of such permutations.
@article{ZNSL_2014_421_a12,
     author = {M. A. Rybalkin},
     title = {Classification of permutation fewnomials over simple finite fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--165},
     year = {2014},
     volume = {421},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/}
}
TY  - JOUR
AU  - M. A. Rybalkin
TI  - Classification of permutation fewnomials over simple finite fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 152
EP  - 165
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/
LA  - ru
ID  - ZNSL_2014_421_a12
ER  - 
%0 Journal Article
%A M. A. Rybalkin
%T Classification of permutation fewnomials over simple finite fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 152-165
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/
%G ru
%F ZNSL_2014_421_a12
M. A. Rybalkin. Classification of permutation fewnomials over simple finite fields. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 152-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/

[1] C. Hermite, Sur les fonctions de sept lettres, 1905

[2] L. E. Dickson, “The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group”, Ann. Math., 11 (1896), 161–183 | DOI | MR | Zbl

[3] R. Lidl, G. L. Mullen, “When Does a Polynomial over a Finite Field Permute the Elements of the Field?”, The American Mathematical Monthly, 95:3 (1988), 243–246 | DOI | MR | Zbl

[4] R. Lidl, G. L. Mullen, “When Does a Polynomial over a Finite Field Permute the Elements of the Field? II”, The American Mathematical Monthly, 100:1 (1993), 71–74 | DOI | MR | Zbl

[5] N. Vasilev, M. Rybalkin, “Permutation binomials and their groups”, J. Math. Sci., 179 (2011), 679–689 | DOI | MR

[6] D. Wan, R. Lidl, “Permutation polynomials of the form $x^r f(x^{\frac{q-1}d})$ and their group structure”, Monatshefte für Mathematik, 112:2 (1991), 149–163 | DOI | MR | Zbl

[7] M. E. Zieve, On some permutation polynomials over $\mathbb F_q$ of the form $x^r h(x^{(q-1)/d)})$, arXiv: 0707.1110

[8] Qiang Wang, “On inverse permutation polynomials”, Finite Fields and Their Applications, 15:2 (2009), 207–213 | DOI | MR | Zbl

[9] A. M. Masuda, M. E. Zieve, “Permutation binomials over finite fields”, Trans. Amer. Math. Soc., 361 (2009), 4169–4180 | DOI | MR | Zbl

[10] R. P. Singh, B. K. Sarma, A. Saikia, Public key cryptography using permutation $p$-polynomials over fields, IACR Cryptology ePrint Archive: , 2009 eprint.iacr.org/2009/208.pdf

[11] G. Castagnos, D. Vergnaud, “Trapdoor permutation polynomials of $\mathbf Z/n\mathbf Z$ and public key cryptosystems”, Information Security, 10th International Conference, ISC 2007, Lect. Notes Comput. Sci., 4779, Springer, 2007, 333–350 | DOI | Zbl

[12] R. Lidl, W. B. Müller, “Permutation polynomials in RSA-cryptosystems”, Advances in cryptology (Santa Barbara, Calif., 1983), Plenum, New York, 1984, 293–310 | DOI | MR

[13] S. R. Finch, Mathematical Constants, Encyclopedia of mathematics and its applications, 94, 2003 | MR | Zbl