@article{ZNSL_2014_421_a12,
author = {M. A. Rybalkin},
title = {Classification of permutation fewnomials over simple finite fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--165},
year = {2014},
volume = {421},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/}
}
M. A. Rybalkin. Classification of permutation fewnomials over simple finite fields. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 152-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a12/
[1] C. Hermite, Sur les fonctions de sept lettres, 1905
[2] L. E. Dickson, “The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group”, Ann. Math., 11 (1896), 161–183 | DOI | MR | Zbl
[3] R. Lidl, G. L. Mullen, “When Does a Polynomial over a Finite Field Permute the Elements of the Field?”, The American Mathematical Monthly, 95:3 (1988), 243–246 | DOI | MR | Zbl
[4] R. Lidl, G. L. Mullen, “When Does a Polynomial over a Finite Field Permute the Elements of the Field? II”, The American Mathematical Monthly, 100:1 (1993), 71–74 | DOI | MR | Zbl
[5] N. Vasilev, M. Rybalkin, “Permutation binomials and their groups”, J. Math. Sci., 179 (2011), 679–689 | DOI | MR
[6] D. Wan, R. Lidl, “Permutation polynomials of the form $x^r f(x^{\frac{q-1}d})$ and their group structure”, Monatshefte für Mathematik, 112:2 (1991), 149–163 | DOI | MR | Zbl
[7] M. E. Zieve, On some permutation polynomials over $\mathbb F_q$ of the form $x^r h(x^{(q-1)/d)})$, arXiv: 0707.1110
[8] Qiang Wang, “On inverse permutation polynomials”, Finite Fields and Their Applications, 15:2 (2009), 207–213 | DOI | MR | Zbl
[9] A. M. Masuda, M. E. Zieve, “Permutation binomials over finite fields”, Trans. Amer. Math. Soc., 361 (2009), 4169–4180 | DOI | MR | Zbl
[10] R. P. Singh, B. K. Sarma, A. Saikia, Public key cryptography using permutation $p$-polynomials over fields, IACR Cryptology ePrint Archive: , 2009 eprint.iacr.org/2009/208.pdf
[11] G. Castagnos, D. Vergnaud, “Trapdoor permutation polynomials of $\mathbf Z/n\mathbf Z$ and public key cryptosystems”, Information Security, 10th International Conference, ISC 2007, Lect. Notes Comput. Sci., 4779, Springer, 2007, 333–350 | DOI | Zbl
[12] R. Lidl, W. B. Müller, “Permutation polynomials in RSA-cryptosystems”, Advances in cryptology (Santa Barbara, Calif., 1983), Plenum, New York, 1984, 293–310 | DOI | MR
[13] S. R. Finch, Mathematical Constants, Encyclopedia of mathematics and its applications, 94, 2003 | MR | Zbl