@article{ZNSL_2014_421_a11,
author = {Yu. G. Palii},
title = {A method for construction of {Lie} group invariants},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--151},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/}
}
Yu. G. Palii. A method for construction of Lie group invariants. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 138-151. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/
[1] B. Sturmfels, Algorithms in Invariant Theory, 2nd edition, Springer-Verlag, 2008 | MR
[2] H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[3] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag Inc., N.Y., 1978 | MR | Zbl
[4] M. Hochster, J. Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay”, Adv. Math., 13 (1974), 125–175 | DOI | MR
[5] H. Weyl, The classical groups – their invariants and representations, Princeton Univ. Press, Princeton, 1939 | MR
[6] R. Stanley, “Invariants of finite groups and their applications to combinatorics”, Bull. Amer. Math. Soc., 1:3 (1979), 475–511 | DOI | MR | Zbl