A method for construction of Lie group invariants
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 138-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an adjoint action of a Lie group $G$ (or its subgroup) on Lie algebra Lie $(G)$ we suggest a method for construction of invariants. The method is easy in implementation and may shed the light on algebraical independence of invariants. The main idea is to extent automorphisms of the Cartan subalgebra to automorphisms of the whole Lie algebra Lie $(G)$. Corresponding matrices in a linear space $V\cong\operatorname{Lie}(G)$ define a Reynolds operator “gathering” invariants of torus $\mathcal T\subset G$ into special polynomials. A condition for a linear combination of polynomials to be $G$-invariant is equivalent to the existence of a solution for a certain system of linear equations on the coefficients in the combination. As an example we consider the adjoint action of the Lie group $\operatorname{SL}(3)$ (and its subgroup $\operatorname{SL}(2)$) on the Lie algebra $\mathfrak{sl}(3)$.
@article{ZNSL_2014_421_a11,
     author = {Yu. G. Palii},
     title = {A method for construction of {Lie} group invariants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--151},
     year = {2014},
     volume = {421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/}
}
TY  - JOUR
AU  - Yu. G. Palii
TI  - A method for construction of Lie group invariants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 138
EP  - 151
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/
LA  - en
ID  - ZNSL_2014_421_a11
ER  - 
%0 Journal Article
%A Yu. G. Palii
%T A method for construction of Lie group invariants
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 138-151
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/
%G en
%F ZNSL_2014_421_a11
Yu. G. Palii. A method for construction of Lie group invariants. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 138-151. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a11/

[1] B. Sturmfels, Algorithms in Invariant Theory, 2nd edition, Springer-Verlag, 2008 | MR

[2] H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[3] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag Inc., N.Y., 1978 | MR | Zbl

[4] M. Hochster, J. Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay”, Adv. Math., 13 (1974), 125–175 | DOI | MR

[5] H. Weyl, The classical groups – their invariants and representations, Princeton Univ. Press, Princeton, 1939 | MR

[6] R. Stanley, “Invariants of finite groups and their applications to combinatorics”, Bull. Amer. Math. Soc., 1:3 (1979), 475–511 | DOI | MR | Zbl