On modular computation of Gr\"obner bases with integer coefficients
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 133-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $I_1\subset I_2\subset\dots$ be an increasing sequence of ideals of the ring $\mathbb Z[X]$, $X=(x_1,\dots,x_n)$ and let $I$ be their union. We propose an algorithm to compute the Gröbner base of $I$ under the assumption that the Gröbner bases of the ideal $\mathbb QI$ of the ring $\mathbb Q[X]$ and the the ideals $I\otimes(\mathbb Z/m\mathbb Z)$ of the rings $(\mathbb Z/m\mathbb Z)[X]$ are known.
Such an algorithmic problem arises, for example, in the construction of Markov and semi-Markov traces on cubic Hecke algebras.
@article{ZNSL_2014_421_a10,
author = {S. Yu. Orevkov},
title = {On modular computation of {Gr\"obner} bases with integer coefficients},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--137},
publisher = {mathdoc},
volume = {421},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a10/}
}
S. Yu. Orevkov. On modular computation of Gr\"obner bases with integer coefficients. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 133-137. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a10/