@article{ZNSL_2014_421_a10,
author = {S. Yu. Orevkov},
title = {On modular computation of {Gr\"obner} bases with integer coefficients},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--137},
year = {2014},
volume = {421},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a10/}
}
S. Yu. Orevkov. On modular computation of Gröbner bases with integer coefficients. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 133-137. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a10/
[1] W. W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, A.M.S., RI, 1994 | MR
[2] E. A. Arnold, “Modular algorithms for computing Gröbner bases”, J. of Symbolic Computations, 35 (2003), 403–419 | DOI | MR | Zbl
[3] M. Aschenbrenner, “Algorithms for computing saturations of ideals in finitely generated commutative rings”, Appendix to: B. Poonen, “Automorphisms mapping a point into a subvariety”, J. of Algebraic Geom., 20 (2011), 785–794 | DOI | MR
[4] V. Idrees, G. Pfister, S. Steidel, “Parallelization of modular algorithms”, J. of Symbolic Computations, 46 (2011), 672–684 | DOI | MR | Zbl
[5] S. Yu. Orevkov, Markov trace on the Funar algebra, arXiv: 1206.0765
[6] S. Yu. Orevkov, “Kubicheskie algebry Gekke i invarianty transversalnykh zatseplenii”, DAN (to appear)