@article{ZNSL_2014_421_a1,
author = {S. N. Baranov and S. V. Soloviev},
title = {Conditionally reversible computations and weak universality in category theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--32},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a1/}
}
S. N. Baranov; S. V. Soloviev. Conditionally reversible computations and weak universality in category theory. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 19-32. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a1/
[1] A. Asperti, G. Longo, Categories, types, and structures – an introduction to category theory for the working computer scientist, Found. Comput. Ser., MIT Press, 1991 | MR | Zbl
[2] D. Chemouil, “Isomorphisms of simple inductive types through extensional rewriting”, Math. Structures Computer Sci., 15:5 (2005), 875–917 | DOI | MR
[3] Z. Luo, Computation and reasoning. A type theory for computer science, International Series of Monographs on Computer Science, 11, Oxford Science Publications, Clarendon Press, Oxford, 1994 | MR | Zbl
[4] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd edition, Springer-Verlag, 1998 | MR
[5] P. Martin-Löf, Intuitionistic type theory, Notes by G. Sambin of a series of lectures given in Padua, June 1980, Bibliopolis, 1984 | MR | Zbl
[6] M. Saeedi, I. L. Markov, Syntheisis and optimization of reversible circuits – A Survey, 12 Oct. 2011, arXiv: 1110.2574v1[cs.ET]