Domino tilings and determinants
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 5-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider an arbitrary simply connected squared figure $F$ on the plane and its dual graph (vertices correspond to cells, edges correspond to cells sharing a common side). We investigate the relationship between the determinant of the adjacency matrix of the graph and the domino tilings of the figure $F$. We prove that in the case where all the tilings can be splitted into pairs such that the numbers of vertical dominos in each pair differ by 1, then $\operatorname{det}A_F=0$. And in the case where all the tilings except one can be splitted into such pairs, $\operatorname{det}A_F=(-1)^s$, where $s$ is half the area of the figure $F$.
@article{ZNSL_2014_421_a0,
     author = {V. Aksenov and K. Kokhas},
     title = {Domino tilings and determinants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {421},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/}
}
TY  - JOUR
AU  - V. Aksenov
AU  - K. Kokhas
TI  - Domino tilings and determinants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 18
VL  - 421
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/
LA  - ru
ID  - ZNSL_2014_421_a0
ER  - 
%0 Journal Article
%A V. Aksenov
%A K. Kokhas
%T Domino tilings and determinants
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-18
%V 421
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/
%G ru
%F ZNSL_2014_421_a0
V. Aksenov; K. Kokhas. Domino tilings and determinants. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/