Domino tilings and determinants
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 5-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider an arbitrary simply connected squared figure $F$ on the plane and its dual graph (vertices correspond to cells, edges correspond to cells sharing a common side). We investigate the relationship between the determinant of the adjacency matrix of the graph and the domino tilings of the figure $F$. We prove that in the case where all the tilings can be splitted into pairs such that the numbers of vertical dominos in each pair differ by 1, then $\operatorname{det}A_F=0$. And in the case where all the tilings except one can be splitted into such pairs, $\operatorname{det}A_F=(-1)^s$, where $s$ is half the area of the figure $F$.
@article{ZNSL_2014_421_a0,
     author = {V. Aksenov and K. Kokhas},
     title = {Domino tilings and determinants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     year = {2014},
     volume = {421},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/}
}
TY  - JOUR
AU  - V. Aksenov
AU  - K. Kokhas
TI  - Domino tilings and determinants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 18
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/
LA  - ru
ID  - ZNSL_2014_421_a0
ER  - 
%0 Journal Article
%A V. Aksenov
%A K. Kokhas
%T Domino tilings and determinants
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-18
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/
%G ru
%F ZNSL_2014_421_a0
V. Aksenov; K. Kokhas. Domino tilings and determinants. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a0/

[1] S. L. Berlov, S. V. Ivanov, K. P. Kokhas, Peterburgskie matematicheskie olimpiady. Zadacha 97.109, Lan, SPb, 2003

[2] M. N. Vyalyi, “Pfaffiany ili iskusstvo rasstavlyat znaki”, Mat. prosveschenie. Tretya seriya, 9, 2005, 129–142

[3] D. V. Karpov, O chëtnosti kolichestva razbienii na pryamougolniki $1\times2$, Ne opublikovano, 1997

[4] K. P. Kokhas, “Razbieniya na domino”, Mat. prosveschenie. Tretya seriya, 9, 2005, 143–163

[5] K. P. Kokhas, “Razbieniya atstekskikh diamantov i kvadratov na domino”, Zap. nauchn. semin. POMI, 360, 2008, 180–230 | Zbl

[6] D. Zeilberger, “A combinatorial approach to matrix algebra”, Discrete Math., 56 (1985), 61–72 | DOI | MR | Zbl

[7] D. Pragel, Determinants of box products of paths, arXiv: 1110.3497 | MR