@article{ZNSL_2013_420_a9,
author = {B. P. Harlamov},
title = {Preserving of {Markovness} whilst delayed reflection},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--174},
year = {2013},
volume = {420},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/}
}
B. P. Harlamov. Preserving of Markovness whilst delayed reflection. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 157-174. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/
[1] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl
[2] F. Khausdorf, Teoriya mnozhestv, KomKniga, M., 2006
[3] B. P. Kharlamov, “Diffuzionnyi protsess s zaderzhkoi na krayakh otrezka”, Zap. nauchn. semin. POMI, 351, 2007, 284–297 | MR
[4] B. P. Harlamov, Continuous semi-Markov processes, ISTE Wiley, London, 2008 | MR | Zbl
[5] B. P. Kharlamov, “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse intervala”, Zap. nauchn. semin. POMI, 368, 2009, 243–267 | MR
[6] B. P. Harlamov, “Stochastic model of gas capillary chromatography”, Communication in Statistics. Simulation and Computation, 41:7 (2012), 1023–1031 | DOI | MR | Zbl
[7] S. S. Rasova, B. P. Harlamov, “O dvizhenii brounovskikh chastits vdol zaderzhivayuschego ekrana”, Zap. nauchn. semin. POMI, 396, 2011, 175–194