Preserving of Markovness whilst delayed reflection
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 157-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A one-dimensional locally-Markov diffusion process with positive range of values is considered. This process is assumed to be reflected from the point 0. All variants of reflection preserving the semi-Markov property are described. The reflected process prolongs to be locally-Markov in open intervals, but it can loose the global Markov property. The reflection is characterized by $\alpha(r)$ which is the first exit time from semi-interval $[0,r)$ after the first hitting time at 0 (for any $r>0$). A distribution of this time-interval is used for deriving a time change a process with instantaneous reflection into a process with delayed reflection. A process which preserves its markovness after the delayed reflection is proved to have a special distribution of the set of time points when the process has zero meaning during the time $\alpha(r)$. This discontinuum set has exponentially distributed Lebesgue measure.
@article{ZNSL_2013_420_a9,
     author = {B. P. Harlamov},
     title = {Preserving of {Markovness} whilst delayed reflection},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--174},
     year = {2013},
     volume = {420},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Preserving of Markovness whilst delayed reflection
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 157
EP  - 174
VL  - 420
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/
LA  - ru
ID  - ZNSL_2013_420_a9
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Preserving of Markovness whilst delayed reflection
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 157-174
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/
%G ru
%F ZNSL_2013_420_a9
B. P. Harlamov. Preserving of Markovness whilst delayed reflection. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 157-174. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a9/

[1] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl

[2] F. Khausdorf, Teoriya mnozhestv, KomKniga, M., 2006

[3] B. P. Kharlamov, “Diffuzionnyi protsess s zaderzhkoi na krayakh otrezka”, Zap. nauchn. semin. POMI, 351, 2007, 284–297 | MR

[4] B. P. Harlamov, Continuous semi-Markov processes, ISTE Wiley, London, 2008 | MR | Zbl

[5] B. P. Kharlamov, “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse intervala”, Zap. nauchn. semin. POMI, 368, 2009, 243–267 | MR

[6] B. P. Harlamov, “Stochastic model of gas capillary chromatography”, Communication in Statistics. Simulation and Computation, 41:7 (2012), 1023–1031 | DOI | MR | Zbl

[7] S. S. Rasova, B. P. Harlamov, “O dvizhenii brounovskikh chastits vdol zaderzhivayuschego ekrana”, Zap. nauchn. semin. POMI, 396, 2011, 175–194