Estimating rates of convergence to stable distributions on $\mathbb Q_p$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 142-148
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with estimating rates of convergence of distributions of normalized sums of i.i.d. $p$-adic random variables to stable distributions.
@article{ZNSL_2013_420_a7,
author = {A. E. Mikhailov},
title = {Estimating rates of convergence to stable distributions on~$\mathbb Q_p$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--148},
year = {2013},
volume = {420},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/}
}
A. E. Mikhailov. Estimating rates of convergence to stable distributions on $\mathbb Q_p$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 142-148. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/
[1] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl
[2] A. N. Kochubei, “Limit theorems for sums of p-adic random variables”, Exposition. Math., 16 (1998), 425–439 | MR | Zbl
[3] A. M. Robert, A course in $p$-adic analysis, Springer, 2000 | MR
[4] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge University Press, Cambridge, 1984 | MR | Zbl
[5] K. Yasuda, “Semi-stable processes on local fields”, Tohoku Math. J., 58 (2006), 419–431 | DOI | MR | Zbl