Estimating rates of convergence to stable distributions on $\mathbb Q_p$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 142-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with estimating rates of convergence of distributions of normalized sums of i.i.d. $p$-adic random variables to stable distributions.
@article{ZNSL_2013_420_a7,
     author = {A. E. Mikhailov},
     title = {Estimating rates of convergence to stable distributions on~$\mathbb Q_p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--148},
     year = {2013},
     volume = {420},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/}
}
TY  - JOUR
AU  - A. E. Mikhailov
TI  - Estimating rates of convergence to stable distributions on $\mathbb Q_p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 142
EP  - 148
VL  - 420
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/
LA  - ru
ID  - ZNSL_2013_420_a7
ER  - 
%0 Journal Article
%A A. E. Mikhailov
%T Estimating rates of convergence to stable distributions on $\mathbb Q_p$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 142-148
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/
%G ru
%F ZNSL_2013_420_a7
A. E. Mikhailov. Estimating rates of convergence to stable distributions on $\mathbb Q_p$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 142-148. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a7/

[1] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl

[2] A. N. Kochubei, “Limit theorems for sums of p-adic random variables”, Exposition. Math., 16 (1998), 425–439 | MR | Zbl

[3] A. M. Robert, A course in $p$-adic analysis, Springer, 2000 | MR

[4] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[5] K. Yasuda, “Semi-stable processes on local fields”, Tohoku Math. J., 58 (2006), 419–431 | DOI | MR | Zbl