On the strong law of large numbers for sequences of dependent random variables with finite second moments
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 127-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New sufficient conditions of a.s. convergence of the series $\sum_{n=1}^\infty X_n$ and new sufficient conditions for the applicability of the strong law of large numbers are established for a sequence of dependent random variables $\{X_n\}_{n=1}^\infty$ with finite second moments. These results are generalizations of the well known theorems on a.s. convergence of the series of orthogonal random variables and on the strong law of large numbers for orthogonal random variables (Men'shov–Rademacher and Petrov's theorems). It is shown that some of the results obtained are optimal.
@article{ZNSL_2013_420_a6,
     author = {V. M. Korchevsky},
     title = {On the strong law of large numbers for sequences of dependent random variables with finite second moments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--141},
     year = {2013},
     volume = {420},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/}
}
TY  - JOUR
AU  - V. M. Korchevsky
TI  - On the strong law of large numbers for sequences of dependent random variables with finite second moments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 127
EP  - 141
VL  - 420
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/
LA  - ru
ID  - ZNSL_2013_420_a6
ER  - 
%0 Journal Article
%A V. M. Korchevsky
%T On the strong law of large numbers for sequences of dependent random variables with finite second moments
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 127-141
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/
%G ru
%F ZNSL_2013_420_a6
V. M. Korchevsky. On the strong law of large numbers for sequences of dependent random variables with finite second moments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 127-141. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/

[1] Dzh. L. Dub, Veroyatnostnye protsessy, IL, M., 1956

[2] V. M. Korchevskii, “Ob usloviyakh primenimosti usilennogo zakona bolshikh chisel k posledovatelnostyam nezavisimykh sluchainykh velichin”, Vestn. S.-Peterb. un-ta. Ser. 1, 2010, no. 4, 32–35

[3] V. M. Korchevskii, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti sluchainykh velichin bez predpolozheniya o nezavisimosti”, Vestn. S.-Peterb. un-ta. Ser. 1, 2011, no. 4, 38–41

[4] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[5] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti ortogonalnykh sluchainykh velichin”, Vestn. LGU, 1975, no. 7, 52–57 | Zbl

[6] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya ortogonalnykh sluchainykh velichin”, Zap. nauchn. semin. LOMI, 72, 1977, 103–106 | MR | Zbl

[7] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl

[8] P. A. Yaskov, “Ob odnom obobschenii teoremy Menshova–Rademakhera”, Matem. zametki, 86:6 (2009), 925–937 | DOI | MR | Zbl

[9] R. J. Serfling, “Moment inequalities for the maximum cumulative sum”, Ann. Math. Statist., 41:4 (1970), 1227–1234 | DOI | MR | Zbl

[10] S. H. Sung, “Maximal inequalities for dependent random variables and applications”, J. Inequalities Appl., 2008 (2008), Article ID 598319 | MR