On the strong law of large numbers for sequences of dependent random variables with finite second moments
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 127-141

Voir la notice de l'article provenant de la source Math-Net.Ru

New sufficient conditions of a.s. convergence of the series $\sum_{n=1}^\infty X_n$ and new sufficient conditions for the applicability of the strong law of large numbers are established for a sequence of dependent random variables $\{X_n\}_{n=1}^\infty$ with finite second moments. These results are generalizations of the well known theorems on a.s. convergence of the series of orthogonal random variables and on the strong law of large numbers for orthogonal random variables (Men'shov–Rademacher and Petrov's theorems). It is shown that some of the results obtained are optimal.
@article{ZNSL_2013_420_a6,
     author = {V. M. Korchevsky},
     title = {On the strong law of large numbers for sequences of dependent random variables with finite second moments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {420},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/}
}
TY  - JOUR
AU  - V. M. Korchevsky
TI  - On the strong law of large numbers for sequences of dependent random variables with finite second moments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 127
EP  - 141
VL  - 420
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/
LA  - ru
ID  - ZNSL_2013_420_a6
ER  - 
%0 Journal Article
%A V. M. Korchevsky
%T On the strong law of large numbers for sequences of dependent random variables with finite second moments
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 127-141
%V 420
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/
%G ru
%F ZNSL_2013_420_a6
V. M. Korchevsky. On the strong law of large numbers for sequences of dependent random variables with finite second moments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 127-141. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a6/