A limit theorem on convergence of random walk functionals to a~solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 88-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with a complex parameter $\sigma$ such that $\mathrm{Re}\,\sigma^2\geqslant0$. The above family includes as a particular case both the heat equation (when $\mathrm{Im}\,\sigma=0$) and the Schrödinger equation (when $\mathrm{Re}\,\sigma^2=0$).
@article{ZNSL_2013_420_a4,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {A limit theorem on convergence of random walk functionals to a~solution of the {Cauchy} problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--102},
     publisher = {mathdoc},
     volume = {420},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - A limit theorem on convergence of random walk functionals to a~solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 88
EP  - 102
VL  - 420
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
LA  - ru
ID  - ZNSL_2013_420_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T A limit theorem on convergence of random walk functionals to a~solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 88-102
%V 420
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
%G ru
%F ZNSL_2013_420_a4
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A limit theorem on convergence of random walk functionals to a~solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 88-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/