@article{ZNSL_2013_420_a4,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {A limit theorem on convergence of random walk functionals to a~solution of the {Cauchy} problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--102},
year = {2013},
volume = {420},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/}
}
TY - JOUR
AU - I. A. Ibragimov
AU - N. V. Smorodina
AU - M. M. Faddeev
TI - A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2013
SP - 88
EP - 102
VL - 420
UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
LA - ru
ID - ZNSL_2013_420_a4
ER -
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 88-102
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
%G ru
%F ZNSL_2013_420_a4
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 88-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
[1] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo Leningradskogo universiteta, Leningrad, 1980
[2] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983 | MR
[3] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR
[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR
[5] S. Albeverio, R. Høegh-Krohn, S. Mazzucchi, Mathematical Theory of Feynman. Path Integrals, LNP, 523, 2nd ed., Springer, 2008 | MR | Zbl
[6] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[7] S. Albeverio, N. Smorodina, M. Faddeev, “The probabilistic representation of the exponent of a class of pseudo-differential operators”, J. Global Stoch. Anal., 1:2 (2011), 123–148
[8] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 396, 2011, 111–143
[9] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[10] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl