A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 88-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with a complex parameter $\sigma$ such that $\mathrm{Re}\,\sigma^2\geqslant0$. The above family includes as a particular case both the heat equation (when $\mathrm{Im}\,\sigma=0$) and the Schrödinger equation (when $\mathrm{Re}\,\sigma^2=0$).
@article{ZNSL_2013_420_a4,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {A limit theorem on convergence of random walk functionals to a~solution of the {Cauchy} problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--102},
     year = {2013},
     volume = {420},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 88
EP  - 102
VL  - 420
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
LA  - ru
ID  - ZNSL_2013_420_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 88-102
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/
%G ru
%F ZNSL_2013_420_a4
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 88-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a4/

[1] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo Leningradskogo universiteta, Leningrad, 1980

[2] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983 | MR

[3] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR

[5] S. Albeverio, R. Høegh-Krohn, S. Mazzucchi, Mathematical Theory of Feynman. Path Integrals, LNP, 523, 2nd ed., Springer, 2008 | MR | Zbl

[6] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[7] S. Albeverio, N. Smorodina, M. Faddeev, “The probabilistic representation of the exponent of a class of pseudo-differential operators”, J. Global Stoch. Anal., 1:2 (2011), 123–148

[8] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 396, 2011, 111–143

[9] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[10] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl