@article{ZNSL_2013_420_a3,
author = {M. S. Ermakov},
title = {On asymptotically efficient statistical inference on a~signal parameter},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--87},
year = {2013},
volume = {420},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a3/}
}
M. S. Ermakov. On asymptotically efficient statistical inference on a signal parameter. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 70-87. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a3/
[1] J. Hajek, “Local asymptotic minimax and admisibility in estimation”, Proc. Sixth Berkeley Symp. Math. Statist. Probab., v. 1, California Univ. Press, Berkeley, 1972, 175–194 | MR | Zbl
[2] I. A. Ibragimov, R. Z. Khasminskii, Asimptoticheskaya teoriya otsenivaniya, Nauka, Moskva, 1979 | MR
[3] Yu. A. Kutoyants, Identification of Dynamical System with Small Noise, Springer, Berlin, 1994 | MR
[4] L. Le Cam, “Limits of experiments”, Proc. Sixth Berkeley Symp. Math. Statist. Probab., v. 1, California Univ. Press, Berkeley, 1972, 245–261 | MR | Zbl
[5] H. Strasser, Mathematical Theory of Statistics, W. de Gruyter, Berlin, 1985 | MR | Zbl
[6] A. W. van der Vaart, Asymptotic Statistics, Cambridge. University Press, 1998 | MR
[7] R. E. Blahut, “Hypothesis testing and information theory”, IEEE Trans. Inform. Theory, 20 (1974), 405–415 | DOI | MR
[8] R. R. Bahadur, “Asymptotic efficiency of tests and estimates”, Sankhyā, 22 (1960), 229–252 | MR | Zbl
[9] J. Bishwal, Parameter Estimation of Stochastic Differential Equations, Springer, Berlin–Heidelderg, 2008 | MR | Zbl
[10] T. Chiyonobu, “Hypothesis testing for signal detection problem and large deviations”, Nagoya Math. J., 162 (2003), 187–203 | MR
[11] A. Puhalskii, V. Spokoiny, “On large-deviation efficiency in statistical inference”, Bernoulli, 4 (1998), 203–272 | DOI | MR | Zbl
[12] A. A. Borovkov, A. A. Mogulskii, Bolshie ukloneniya i proverka statisticheskikh gipotez, Trudy instituta matematiki SO RAN, 19, Nauka, Novosibirsk, 1992 | MR | Zbl
[13] M. S. Ermakov, “Asimptoticheski effektivnye statisticheskie vyvody dlya veroyatnostei umerennykh uklonenii”, Teoriya veroyatn. i ee primen., 48:4 (2003), 676–700 | DOI | MR | Zbl
[14] M. S. Ermakov, “The sharp lower bound of asymptotic efficiency of estimators in the zone of moderate deviation probabilities”, Electronic J. Statist., 6 (2012), 2150–2184 | DOI | MR | Zbl
[15] M. Radavičius, “From asymptotic efficiency in minimax sense to Bahadur efficiency”, New Trends Probab. Statist., eds. V. Sazonov, T. Shervashidze, VSP/Mokslas, Vilnius, 1991, 629–635 | MR
[16] W. C. M. Kallenberg, “Intermediate efficiency, theory and examples”, Ann. Statist., 11 (1983), 170–182 | DOI | MR | Zbl
[17] M. V. Burnashev, “Ob otsenke maksimalnogo pravdopodobiya parametra signala v belom gaussovskom shume”, Probl. peredachi inform., 11:4 (1975), 55–69 | MR | Zbl
[18] F. Q. Gao, F. J. Zhao, “Moderate deviation and hypothesis testing for signal detection problem”, Sci. China. Math., 55 (2012), 2273–2284 | DOI | MR | Zbl
[19] S. Ihara, Y. Sakuma, “Signal detection in white Gaussian channel”, Proc. Seventh Japan–Russian Symp. Probab. Theory Math. Stat., World Scientific, Singapore, 1996, 147–156 | MR | Zbl
[20] R. S. Liptzer, A. N. Shiriaev, Statistics of Random Processes, Springer, Berlin–Heidelderg, 2005
[21] L. D. Brown, A. V. Carter, M. G. Low, C. H. Zhang, “Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift”, Ann. Statist., 32 (2004), 2074–2097 | DOI | MR | Zbl
[22] G. K. Golubev, M. Nussbaum, H. H. Zhou, “Asymptotic equivalence of spectral density estimation and Gaussian white noise”, Ann. Statist., 38 (2010), 181–214 | DOI | MR | Zbl
[23] J. Wolfowitz, “Asymptotic efficiency of the maximum likelihood estimator”, Teoriya veroyatn. i ee primen., 10:2 (1965), 267–281 | MR | Zbl