Estimates for the concentration functions in the Littlewood--Offord problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 50-69
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^na_kX_k$ with respect to the arithmetic structure of coefficients $a_k$. Such concentration results recently became important in connection with investigations about singular values of random matrices. In this paper we formulate and prove some refinements of a result of Vershynin (2011).
@article{ZNSL_2013_420_a2,
author = {Yu. S. Eliseeva and F. G\"otze and A. Yu. Zaitsev},
title = {Estimates for the concentration functions in the {Littlewood--Offord} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--69},
publisher = {mathdoc},
volume = {420},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a2/}
}
TY - JOUR AU - Yu. S. Eliseeva AU - F. Götze AU - A. Yu. Zaitsev TI - Estimates for the concentration functions in the Littlewood--Offord problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 50 EP - 69 VL - 420 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a2/ LA - ru ID - ZNSL_2013_420_a2 ER -
Yu. S. Eliseeva; F. Götze; A. Yu. Zaitsev. Estimates for the concentration functions in the Littlewood--Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 50-69. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a2/