On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the occupation time random field for a homogeneous Markov chain is Markovian. One investigates the possibility of generalizing this result for inhomogeneous chains. Consider a process which is a homogeneous Markov chain with the transition probability density $Q_1$ up to time $T$ and with the density $Q_2$ after $T$ ($Q_1\ne Q_2$). It turns out that even in this simplest case the occupation time is not Markovian.
@article{ZNSL_2013_420_a1,
author = {A. A. Vorotov},
title = {On the {Markov} property of the occupation time for continuous-time inhomogeneous {Markov} chains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--49},
publisher = {mathdoc},
volume = {420},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/}
}
TY - JOUR AU - A. A. Vorotov TI - On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 23 EP - 49 VL - 420 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/ LA - ru ID - ZNSL_2013_420_a1 ER -
A. A. Vorotov. On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/