On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that the occupation time random field for a homogeneous Markov chain is Markovian. One investigates the possibility of generalizing this result for inhomogeneous chains. Consider a process which is a homogeneous Markov chain with the transition probability density $Q_1$ up to time $T$ and with the density $Q_2$ after $T$ ($Q_1\ne Q_2$). It turns out that even in this simplest case the occupation time is not Markovian.
@article{ZNSL_2013_420_a1,
     author = {A. A. Vorotov},
     title = {On the {Markov} property of the occupation time for continuous-time inhomogeneous {Markov} chains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--49},
     year = {2013},
     volume = {420},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/}
}
TY  - JOUR
AU  - A. A. Vorotov
TI  - On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 23
EP  - 49
VL  - 420
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/
LA  - ru
ID  - ZNSL_2013_420_a1
ER  - 
%0 Journal Article
%A A. A. Vorotov
%T On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 23-49
%V 420
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/
%G ru
%F ZNSL_2013_420_a1
A. A. Vorotov. On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/

[1] S. S. Vallander, “Vremena prebyvaniya dlya neodnorodnykh tsepei Markova s diskretnym vremenem”, Zap. nauchn. semin. LOMI, 177, 1989, 37–45 | MR | Zbl

[2] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. I. Tsepi s diskretnym vremenem”, Zap. nauchn. semin. LOMI, 119, 1982, 39–61 | MR | Zbl

[3] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. II. Tsepi s nepreryvnym vremenem”, Zap. nauchn. semin. LOMI, 130, 1983, 56–64 | MR

[4] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. III. Tsepi na dereve s odnoi tochkoi vetvleniya”, Zap. nauchn. semin. LOMI, 142, 1985, 25–38 | MR | Zbl

[5] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. IV. Tsepi na proizvolnom dereve”, Zap. nauchn. semin. LOMI, 158, 1987, 39–44 | Zbl

[6] S. S. Vallander, “Nekotorye svoistva vremen prebyvaniya i perekhodov dlya schetnykh tsepei Markova”, Tezisy dokladov Chetvertoi Mezhdunarodnoi Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, v. 1, Vilnyus, 1985, 116–118

[7] S. S. Vallander, “Polya prebyvaniya i perekhodov dlya schetnykh tsepei Markova”, Shestoi mezhdunarodnyi sipozium po teorii informatsii, Tezisy dokladov, ch. III, 1984, 64–66

[8] A. A. Vorotov, “Markovskoe svoistvo polya vremeni prebyvaniya dlya diskretnykh markovskikh protsessov”, Zap. nauchn. semin. POMI, 412, 2013, 88–108 | MR

[9] K. Ito, G. Makkin, Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968