On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the occupation time random field for a homogeneous Markov chain is Markovian. One investigates the possibility of generalizing this result for inhomogeneous chains. Consider a process which is a homogeneous Markov chain with the transition probability density $Q_1$ up to time $T$ and with the density $Q_2$ after $T$ ($Q_1\ne Q_2$). It turns out that even in this simplest case the occupation time is not Markovian.
@article{ZNSL_2013_420_a1,
     author = {A. A. Vorotov},
     title = {On the {Markov} property of the occupation time for continuous-time inhomogeneous {Markov} chains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--49},
     publisher = {mathdoc},
     volume = {420},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/}
}
TY  - JOUR
AU  - A. A. Vorotov
TI  - On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 23
EP  - 49
VL  - 420
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/
LA  - ru
ID  - ZNSL_2013_420_a1
ER  - 
%0 Journal Article
%A A. A. Vorotov
%T On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 23-49
%V 420
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/
%G ru
%F ZNSL_2013_420_a1
A. A. Vorotov. On the Markov property of the occupation time for continuous-time inhomogeneous Markov chains. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 20, Tome 420 (2013), pp. 23-49. http://geodesic.mathdoc.fr/item/ZNSL_2013_420_a1/