@article{ZNSL_2013_419_a9,
author = {I. S. Kostarev and T. R. Gazizov and Yu. M. Kazantsev},
title = {Analytic evaluation of the matrix entries for linear algebraic systems in the problem of electromagnetic scattering by surfaces of arbitrary shape},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--167},
year = {2013},
volume = {419},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a9/}
}
TY - JOUR AU - I. S. Kostarev AU - T. R. Gazizov AU - Yu. M. Kazantsev TI - Analytic evaluation of the matrix entries for linear algebraic systems in the problem of electromagnetic scattering by surfaces of arbitrary shape JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 154 EP - 167 VL - 419 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a9/ LA - ru ID - ZNSL_2013_419_a9 ER -
%0 Journal Article %A I. S. Kostarev %A T. R. Gazizov %A Yu. M. Kazantsev %T Analytic evaluation of the matrix entries for linear algebraic systems in the problem of electromagnetic scattering by surfaces of arbitrary shape %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 154-167 %V 419 %U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a9/ %G ru %F ZNSL_2013_419_a9
I. S. Kostarev; T. R. Gazizov; Yu. M. Kazantsev. Analytic evaluation of the matrix entries for linear algebraic systems in the problem of electromagnetic scattering by surfaces of arbitrary shape. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 154-167. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a9/
[1] S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape”, IEEE Trans. Antennas Propag., 30:3 (1982), 409–418 | DOI
[2] I. S. Kostarev, “Elektromagnitnoe rasseyanie poverkhnostyami proizvolnoi formy”, Tez. dokl. nauch.-tekhn. konf. molodykh spetsialistov “Elektronnye i elektromekhanicheskie sistemy i ustroistva”, Tomsk, 2008, 171–174
[3] Eng-Kee Chus, Xing-Chang Wei, “Closed-form evaluation of the integration of Green's function for method of moments”, IEEE Trans. Inst. High Perform. Comput., 8 (2008), 942–945
[4] R. F. Harrington, Field Computation by Moment Methods, Macmillan, New York, 1968
[5] A. R. Hall, Generalized Method of Moments, Oxford University Press, 2005 | MR
[6] A. F. Petrson, S. L. Ray, R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998 | MR
[7] K. Mahadevan, H. A. Auda, “Electromagnetic field of a rectangular patch of uniform and linear distributions of current”, IEEE Trans. Antennas Propag., 37:12 (1989), 1503–1509 | DOI
[8] L. Alatan, M. I. Aksum, K. Mahadevan, M. T. Birand, “Analytical evaluation of the MoM matrix elements”, IEEE Trans. Microw. Theory Techn., 44:4 (1996), 519–525 | DOI
[9] E. K. Chua, K. Y. See, Z. N. Liu, “Accurate and efficient computation of MoM matrix involving 2D triangular basis functions with line matching”, Int. J. Comput. Meth., 3:3 (2006), 355–370 | DOI | MR | Zbl
[10] J. Waldovgen, “The Newtonian potential of a homogenous cube”, J. Appl. Math. Phys., 27 (1976), 867–871 | DOI | MR
[11] K. Y. See, T. V. Freeman, “Rigorous approach to modeling electromagnetic radiation from finite-size printed circuit structure”, IEE Proc. Microw. Antennas Propag., 146:1 (1999), 29–34 | DOI
[12] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989 | MR