Bounds for the largest two eigenvalues of the signless Laplacian
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 139-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a new upper bound for the largest eigenvalue $q_1$ of the signless Laplacian $Q_G=D_G+A_G$ of a graph $G$, generalizing and improving the known bound $q_1\le\Delta_1+\Delta_2$, where $\Delta_1\ge\cdots\ge\Delta_n$ are the ordered vertex degrees, and new lower bounds for the second largest eigenvalue $q_2$ of $Q_G$ are proved. As implications, an upper bound for the difference $q_1-\mu_1$ of the largest eigenvalues of the signless Laplacian $Q_G$ and of the Laplacian $L_G=D_G-A_G$, an upper bound for the largest eigenvalue of the adjacency matrix $A_G$, and an upper bound for the difference $q_1-q_2$ are obtained. All the bounds suggested are expressed in terms of the vertex degrees.
@article{ZNSL_2013_419_a8,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the largest two eigenvalues of the signless {Laplacian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--153},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a8/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the largest two eigenvalues of the signless Laplacian
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 139
EP  - 153
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a8/
LA  - ru
ID  - ZNSL_2013_419_a8
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the largest two eigenvalues of the signless Laplacian
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 139-153
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a8/
%G ru
%F ZNSL_2013_419_a8
L. Yu. Kolotilina. Bounds for the largest two eigenvalues of the signless Laplacian. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 139-153. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a8/

[1] L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnroi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118 | MR

[2] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[3] Chen Yan, “Properties of spectra of graphs and line graphs”, Appl. Math. J. Chinese Univ., Ser. B, 17 (2002), 371–376 | DOI | MR | Zbl

[4] D. Cvetković, P. Rowlinson, S. K. Simić, “Signless Laplacians of finite graphs”, Linear Algebra Appl., 423 (2007), 155–171 | DOI | MR | Zbl

[5] D. Cvetković, P. Rowlinson, S. K. Simić, “Eigenvalue bounds for the signless Laplacians”, Publ. Inst. Math. (Beogr.) (N.S.), 81(95) (2007), 11–27 | DOI | MR | Zbl

[6] K. Ch. Das, “On conjectures involving second largest signless Laplacian eigenvalue of graphs”, Linear Algebra Appl., 432 (2010), 3018–3029 | DOI | MR | Zbl

[7] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1986

[8] J. S. Li, Y. L. Pan, “A note on the second largest eigenvalue of the Laplacian matrix of a graph”, Linear Multilinear Algebra, 48 (2000), 117–121 | DOI | MR | Zbl

[9] R. Merris, “Laplacian matrices of graphs: A survey”, Linear Algebra Appl., 197 (1994), 143–176 | DOI | MR | Zbl

[10] H. Minc, Nonnegative Matrices, John Wiley and Sons, New York etc., 1988 | MR

[11] L. Silva de Lima, V. Nikiforov, “On the second largest eigenvalue of the signless Laplacian”, Linear Algebra Appl., 438 (2013), 1215–1222 | DOI | MR | Zbl