On bounding inverses to Nekrasov matrices in the infinity norm
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 111-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new upper bound on the infinity norm of the inverse to a Nekrasov matrix, improving two recent bounds by L. Cvetković et al. [L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, and Y.-T. Li, Infinity norm bounds for the inverse of Nekrasov matrices, Appl. Math. Comput., 219, 5020–5024 (2013)], is obtained. Also it is shown that for a strictly diagonally dominant matrix, the bound suggested improves the classical Varah upper bound.
@article{ZNSL_2013_419_a6,
     author = {L. Yu. Kolotilina},
     title = {On bounding inverses to {Nekrasov} matrices in the infinity norm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--120},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a6/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On bounding inverses to Nekrasov matrices in the infinity norm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 111
EP  - 120
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a6/
LA  - ru
ID  - ZNSL_2013_419_a6
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On bounding inverses to Nekrasov matrices in the infinity norm
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 111-120
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a6/
%G ru
%F ZNSL_2013_419_a6
L. Yu. Kolotilina. On bounding inverses to Nekrasov matrices in the infinity norm. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 111-120. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a6/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | MR | Zbl

[2] R. Memke, P. A. Nekrasov', “Reshenie lineinoi sistemy uravnenii posredstvom' posledovatelnykh' priblizhenii”, Matem. sb., 16 (1892), 437–459 | Zbl

[3] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996 | MR | Zbl

[4] D. W. Bailey, D. E. Crabtree, “Bounds on determinants”, Linear Algebra Appl., 2 (1969), 303–309 | DOI | MR | Zbl

[5] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | DOI | MR | Zbl

[6] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[7] A. Ostrowski, “Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen”, Comment. Math. Helv., 30 (1956), 175–210 | DOI | MR | Zbl

[8] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[9] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl