Spline-wavelet coarsening of Courant-type approximations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 77-110
Cet article a éte moissonné depuis la source Math-Net.Ru
Spline-wavelet coarsening of Courant-type approximations (not necessarily piecewise-linear) is considered, and the wavelet decomposition of the corresponding embedded spaces is constructed. The coarsening suggested possesses the property of structure invariance and can be used for obtaining wavelet packages. The results presented are illustrated on model examples.
@article{ZNSL_2013_419_a5,
author = {Yu. K. Dem'yanovich and L. M. Romanovskiǐ},
title = {Spline-wavelet coarsening of {Courant-type} approximations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--110},
year = {2013},
volume = {419},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a5/}
}
Yu. K. Dem'yanovich; L. M. Romanovskiǐ. Spline-wavelet coarsening of Courant-type approximations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 77-110. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a5/
[1] S. Malla, Veivlety v obrabotke signalov, M., 2003
[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, M., 2005 | MR
[3] I. E. Maksimenko, M. A. Skopina, “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl
[4] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, SPb., 1994 | MR
[5] Yu. K. Demyanovich, A. V. Zimin, “Approksimatsii kurantova tipa i ikh veivletnye razlozheniya”, Problemy matematicheskogo analiza, 37, 2008, 3–22 | MR | Zbl
[6] Yu. K. Demyanovich, “Splain-veivletnye razlozheniya na mnogoobrazii”, Problemy matematicheskogo analiza, 36, 2007, 15–22