@article{ZNSL_2013_419_a4,
author = {A. E. Guterman and O. V. Markova and S. D. Sochnev},
title = {Algebra of semimagic matrices and its length},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--76},
year = {2013},
volume = {419},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a4/}
}
A. E. Guterman; O. V. Markova; S. D. Sochnev. Algebra of semimagic matrices and its length. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 52-76. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a4/
[1] I. V. Arzhantsev, V. V. Batyrev, E. I. Bunina, E. S. Golod, A. E. Guterman, M. V. Zaitsev, A. I. Zobnin, A. A. Klyachko, V. T. Markov, A. A. Nechaev, Yu. A. Olshanskii, E. A. Porshnev, Yu. G. Prokhorov, Studencheskie olimpiady po algebre na mekhmate MGU, MTsNMO, M., 2012
[2] A. Van Den Essen, “Magic squares and linear algebra”, Amer. Math. Monthly, 97:1 (1990), 60–62 | DOI | MR
[3] Ch. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2004 | MR
[4] A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl
[5] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR
[6] O. V. Markova, “O dline algebry verkhnetreugolnykh matrits”, Usp. matem. nauk, 60:5 (2005), 177–178 | DOI | MR | Zbl
[7] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fundam prikl. matem., 17:6 (2012), 65–173 | MR
[8] I. Murase, “Semimagic squares and non-semisimple algebras”, Amer. Math. Monthly, 64:3 (1957), 168–173 | DOI | MR | Zbl
[9] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[10] A. Paz, “An application of the Cayley-Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[11] L. M. Weiner, “The algebra of semimagic squares”, Amer. Math. Monthly, 62:4 (1955), 237–239 | DOI | MR | Zbl