On a problem in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 43-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $T$ be the class of functions $f(z)=z+\sum^\infty_{n=2}c_nz^n$ regular and typically real in the disk $U=\{z\in\mathbb C\colon|z|<1\}$. In the paper, sharp estimates on the derivative $f'(r)$ ($0) for functions in the class $T$ in terms of $f(r)$ and $c_2$ and also $f(r)$, $c_2$, and $c_3$ are obtained.
@article{ZNSL_2013_419_a3,
     author = {E. G. Goluzina},
     title = {On a~problem in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--51},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On a problem in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 43
EP  - 51
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/
LA  - ru
ID  - ZNSL_2013_419_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On a problem in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 43-51
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/
%G ru
%F ZNSL_2013_419_a3
E. G. Goluzina. On a problem in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/

[1] J. A. Jenkins, “Some problems for typically real functions”, Canad. J. Math., 13 (1961), 427–431 | DOI | MR

[2] M. S. Robertson, “On the coefficients of typically real function”, Bull. Amer. Math. Soc., 41 (1935), 565–572 | DOI | MR

[3] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. cb., 27(69):2 (1950), 201–218 | MR | Zbl

[4] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973 | MR

[5] F. R. Gantmakher, Teoriya matrits, 5-e izd., M., 2010

[6] Yu. E. Alenitsyn, “Ob oblastyakh izmeneniya sistem koeffitsientov funktsii, predstavimykh summoi integralov Stiltesa”, Vestn. LGU, ser. mat., mekh. i astr., 1962, no. 2(7), 25–41 | Zbl