On a~problem in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 43-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be the class of functions $f(z)=z+\sum^\infty_{n=2}c_nz^n$ regular and typically real in the disk $U=\{z\in\mathbb C\colon|z|1\}$. In the paper, sharp estimates on the derivative $f'(r)$ ($0$) for functions in the class $T$ in terms of $f(r)$ and $c_2$ and also $f(r)$, $c_2$, and $c_3$ are obtained.
@article{ZNSL_2013_419_a3,
     author = {E. G. Goluzina},
     title = {On a~problem in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {419},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On a~problem in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 43
EP  - 51
VL  - 419
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/
LA  - ru
ID  - ZNSL_2013_419_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On a~problem in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 43-51
%V 419
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/
%G ru
%F ZNSL_2013_419_a3
E. G. Goluzina. On a~problem in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a3/