Arithmetic matrix operations that preserve conversion
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 26-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The behavior of the conversion property under matrix arithmetic operations is investigated.
@article{ZNSL_2013_419_a2,
     author = {M. V. Budrevich},
     title = {Arithmetic matrix operations that preserve conversion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--42},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/}
}
TY  - JOUR
AU  - M. V. Budrevich
TI  - Arithmetic matrix operations that preserve conversion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 26
EP  - 42
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/
LA  - ru
ID  - ZNSL_2013_419_a2
ER  - 
%0 Journal Article
%A M. V. Budrevich
%T Arithmetic matrix operations that preserve conversion
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 26-42
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/
%G ru
%F ZNSL_2013_419_a2
M. V. Budrevich. Arithmetic matrix operations that preserve conversion. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 26-42. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/

[1] R. A. Brualdi, B. L. Shader, “On Sing-nonsigular matrices and the conversion of the permanent into the determinant”, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 4 (1991), 117–134 | MR | Zbl

[2] M. V. Budrevich, A. E. Guterman, “Permanent has less zeros than determinant over finite fields”, Amer. Math. Soc., Contemp. Math., 579 (2012), 33–42 | DOI | MR | Zbl

[3] M. P. Coelho, M. A. Duffner, “Immanant preserving and immanant converting maps”, Linear Algebra Appl., 418:1 (2006), 177–187 | DOI | MR | Zbl

[4] A. Guterman, G. Dolinar, B. Kuzma, “Problema Polia o konvertiruemosti dlya simmetricheskikh matrits”, Mat. zametki, 92:5 (2012), 684–698 | DOI | Zbl

[5] A. Guterman, G. Dolinar, B. Kuzma, “Barery Gibsona dlya problemy Polia”, Fundam. prikl. matem., 16:8 (2010), 73–86 | MR

[6] J. von zur Gathen, “Permanent and determinant”, Linear Algebra Appl., 96 (1987), 87–100 | DOI | MR | Zbl

[7] P. M. Gibson, “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476 | DOI | MR | Zbl

[8] B. Kuzma, “Ob otobrazheniyakh, sokhranyayuschikh immananty”, Fundam. prikl. matem., 13:4 (2007), 113–120 | MR | Zbl

[9] C. H. C. Little, “A characterization of convertible $(0;1)$-matrices”, J. Combin. Theory Ser. B, 18 (1975), 187–208 | DOI | MR | Zbl

[10] M. Marcus, H. Minc, “On the relation between the determinant and the permanent”, Illinois J. Math., 5 (1961), 376–381 | MR | Zbl

[11] Kh. Mink, Permanenty, Mir, M., 1982 | MR

[12] G. Polya, “Aufgabe 424”, Arch. Math. Phys., 20:3 (1913), 271

[13] N. Robertson, P. D. Seymour, R. Thomas, “Permanents, Pfaffian orientations, and even directed circuits”, Anals Math., 150 (1999), 929–975 | DOI | MR | Zbl

[14] L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201 | DOI | MR | Zbl

[15] V. V. Vazirani, M. Yannakakis, “Pfaffian orientations, $0-1$ permanents, and even cycles in directed graphs”, Discrete Appl. Math., 25 (1989), 179–190 | DOI | MR | Zbl