@article{ZNSL_2013_419_a2,
author = {M. V. Budrevich},
title = {Arithmetic matrix operations that preserve conversion},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--42},
year = {2013},
volume = {419},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/}
}
M. V. Budrevich. Arithmetic matrix operations that preserve conversion. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 26-42. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a2/
[1] R. A. Brualdi, B. L. Shader, “On Sing-nonsigular matrices and the conversion of the permanent into the determinant”, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 4 (1991), 117–134 | MR | Zbl
[2] M. V. Budrevich, A. E. Guterman, “Permanent has less zeros than determinant over finite fields”, Amer. Math. Soc., Contemp. Math., 579 (2012), 33–42 | DOI | MR | Zbl
[3] M. P. Coelho, M. A. Duffner, “Immanant preserving and immanant converting maps”, Linear Algebra Appl., 418:1 (2006), 177–187 | DOI | MR | Zbl
[4] A. Guterman, G. Dolinar, B. Kuzma, “Problema Polia o konvertiruemosti dlya simmetricheskikh matrits”, Mat. zametki, 92:5 (2012), 684–698 | DOI | Zbl
[5] A. Guterman, G. Dolinar, B. Kuzma, “Barery Gibsona dlya problemy Polia”, Fundam. prikl. matem., 16:8 (2010), 73–86 | MR
[6] J. von zur Gathen, “Permanent and determinant”, Linear Algebra Appl., 96 (1987), 87–100 | DOI | MR | Zbl
[7] P. M. Gibson, “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476 | DOI | MR | Zbl
[8] B. Kuzma, “Ob otobrazheniyakh, sokhranyayuschikh immananty”, Fundam. prikl. matem., 13:4 (2007), 113–120 | MR | Zbl
[9] C. H. C. Little, “A characterization of convertible $(0;1)$-matrices”, J. Combin. Theory Ser. B, 18 (1975), 187–208 | DOI | MR | Zbl
[10] M. Marcus, H. Minc, “On the relation between the determinant and the permanent”, Illinois J. Math., 5 (1961), 376–381 | MR | Zbl
[11] Kh. Mink, Permanenty, Mir, M., 1982 | MR
[12] G. Polya, “Aufgabe 424”, Arch. Math. Phys., 20:3 (1913), 271
[13] N. Robertson, P. D. Seymour, R. Thomas, “Permanents, Pfaffian orientations, and even directed circuits”, Anals Math., 150 (1999), 929–975 | DOI | MR | Zbl
[14] L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201 | DOI | MR | Zbl
[15] V. V. Vazirani, M. Yannakakis, “Pfaffian orientations, $0-1$ permanents, and even cycles in directed graphs”, Discrete Appl. Math., 25 (1989), 179–190 | DOI | MR | Zbl